awacke1's picture
Update app.py
b15b4a9
raw
history blame
2.28 kB
import streamlit as st
import firebase_admin
from firebase_admin import credentials
from firebase_admin import firestore
import datetime
from transformers import pipeline
import gradio as gr
@st.experimental_singleton
def get_db_firestore():
cred = credentials.Certificate('test.json')
firebase_admin.initialize_app(cred, {'projectId': u'clinical-nlp-b9117',})
db = firestore.client()
return db
def upsertoftheminute(collection, document, firefield, first, last, born):
date_time =str(datetime.datetime.today()).split()[0]
doc_ref = db.collection(collection).document(document)
doc_ref.set({u'firefield': firefield, u'first': first, u'last': last, u'born': date_time,})
def selectCollectionDocument(collection, document):
doc_ref = db.collection(collection).document(document)
doc = doc_ref.get()
st.write("The id is: ", doc.id)
st.write("The contents are: ", doc.to_dict())
db = get_db_firestore()
upsertoftheminute(u'TimeSeries', u'DocumentofMinute', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', u'https://huggingface.co/spaces/awacke1/Text2SpeechSentimentSave', 2022)
selectCollectionDocument(u"TimeSeries", u"DocumentofMinute")
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
gr.Interface(
fn=transcribe,
inputs=gr.inputs.Audio(source="microphone", type="filepath"),
outputs="text").launch()
classifier = pipeline("text-classification")
def speech_to_text(speech):
text = asr(speech)["text"]
upsertoftheminute(u'TimeSeries', u'DocumentofMinuteText', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', text, 2022)
return text
def text_to_sentiment(text):
sentiment = classifier(text)[0]["label"]
upsertoftheminute(u'TimeSeries', u'DocumentofMinuteSentiment', u'TestUser1', u'🧠🌳Yggdrasil🌳🧠', sentiment, 2022)
return sentiment
demo = gr.Blocks()
with demo:
audio_file = gr.Audio(type="filepath")
text = gr.Textbox()
label = gr.Label()
b1 = gr.Button("Recognize Speech")
b2 = gr.Button("Classify Sentiment")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
b2.click(text_to_sentiment, inputs=text, outputs=label)
demo.launch()