awacke1's picture
Update app.py
2bfb455
raw
history blame
4.72 kB
import time
import re
import pandas as pd
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
from tokenizers import Tokenizer, AddedToken
import streamlit as st
from st_click_detector import click_detector
DEVICE = "cpu"
MODEL_OPTIONS = ["msmarco-distilbert-base-tas-b", "all-mpnet-base-v2"]
DESCRIPTION = """
# Semantic search
**Enter your query and hit enter**
Built with πŸ€— Hugging Face's [transformers](https://huggingface.co/transformers/) library, [SentenceBert](https://www.sbert.net/) models, [Streamlit](https://streamlit.io/) and 44k movie descriptions from the Kaggle [Movies Dataset](https://www.kaggle.com/rounakbanik/the-movies-dataset)
"""
@st.cache(
show_spinner=False,
hash_funcs={
AutoModel: lambda _: None,
AutoTokenizer: lambda _: None,
dict: lambda _: None,
},
)
def load():
models, tokenizers, embeddings = [], [], []
for model_option in MODEL_OPTIONS:
tokenizers.append(
AutoTokenizer.from_pretrained(f"sentence-transformers/{model_option}")
)
models.append(
AutoModel.from_pretrained(f"sentence-transformers/{model_option}").to(
DEVICE
)
)
embeddings.append(np.load("embeddings.npy"))
embeddings.append(np.load("embeddings2.npy"))
df = pd.read_csv("movies.csv")
return tokenizers, models, embeddings, df
tokenizers, models, embeddings, df = load()
def pooling(model_output):
return model_output.last_hidden_state[:, 0]
def compute_embeddings(texts):
encoded_input = tokenizers[0](
texts, padding=True, truncation=True, return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
model_output = models[0](**encoded_input, return_dict=True)
embeddings = pooling(model_output)
return embeddings.cpu().numpy()
def pooling2(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def compute_embeddings2(list_of_strings):
encoded_input = tokenizers[1](
list_of_strings, padding=True, truncation=True, return_tensors="pt"
).to(DEVICE)
with torch.no_grad():
model_output = models[1](**encoded_input)
sentence_embeddings = pooling2(model_output, encoded_input["attention_mask"])
return F.normalize(sentence_embeddings, p=2, dim=1).cpu().numpy()
@st.cache(
show_spinner=False,
hash_funcs={Tokenizer: lambda _: None, AddedToken: lambda _: None},
)
def semantic_search(query, model_id):
start = time.time()
if len(query.strip()) == 0:
return ""
if "[Similar:" not in query:
if model_id == 0:
query_embedding = compute_embeddings([query])
else:
query_embedding = compute_embeddings2([query])
else:
match = re.match(r"\[Similar:(\d{1,5}).*", query)
if match:
idx = int(match.groups()[0])
query_embedding = embeddings[model_id][idx : idx + 1, :]
if query_embedding.shape[0] == 0:
return ""
else:
return ""
indices = np.argsort(embeddings[model_id] @ np.transpose(query_embedding)[:, 0])[
-1:-11:-1
]
if len(indices) == 0:
return ""
result = "<ol>"
for i in indices:
result += f"<li style='padding-top: 10px'><b>{df.iloc[i].title}</b> ({df.iloc[i].release_date}). {df.iloc[i].overview} "
result += f"<a id='{i}' href='#'>Similar movies</a></li>"
delay = "%.3f" % (time.time() - start)
return f"<p><i>Computation time: {delay} seconds</i></p>{result}</ol>"
st.sidebar.markdown(DESCRIPTION)
model_choice = st.sidebar.selectbox("Similarity model", options=MODEL_OPTIONS)
model_id = 0 if model_choice == MODEL_OPTIONS[0] else 1
if "query" in st.session_state:
query = st.text_input("", value=st.session_state["query"])
else:
query = st.text_input("", value="artificial intelligence")
clicked = click_detector(semantic_search(query, model_id))
if clicked != "":
st.markdown(clicked)
change_query = False
if "last_clicked" not in st.session_state:
st.session_state["last_clicked"] = clicked
change_query = True
else:
if clicked != st.session_state["last_clicked"]:
st.session_state["last_clicked"] = clicked
change_query = True
if change_query:
st.session_state["query"] = f"[Similar:{clicked}] {df.iloc[int(clicked)].title}"
st.experimental_rerun()