awacke1 commited on
Commit
7f6f911
β€’
1 Parent(s): 7e3ce11

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -39
app.py CHANGED
@@ -79,6 +79,10 @@ def load_file(file_name):
79
  with open(file_name, "r") as file:
80
  content = file.read()
81
  return content
 
 
 
 
82
  #import streamlit as st
83
  #from gradio_client import Client
84
  #client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
@@ -91,6 +95,42 @@ def load_file(file_name):
91
  #)
92
  #st.markdown(result)
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  def search_arxiv(query):
95
  st.title("▢️ Semantic and Episodic Memory System")
96
 
@@ -112,10 +152,18 @@ def search_arxiv(query):
112
  )
113
 
114
  # Show ArXiv Scholary Articles! ----------------*************-------------***************----------------------------------------
 
115
  st.markdown(result)
116
- arxiv_results = st.text_area("ArXiv Results: ", value=result, height=400)
 
 
 
 
117
  SpeechSynthesis(result) # Search History Reader / Writer IO Memory - Audio at Same time as Reading.
118
 
 
 
 
119
  filename=generate_filename(result, "md")
120
  base_filename, ext = os.path.splitext(filename)
121
  with open(f"{base_filename}.md", 'w') as file:
@@ -137,7 +185,6 @@ def search_arxiv(query):
137
 
138
 
139
  create_file(filename, query, result, should_save)
140
- # Show ArXiv Scholary Articles! ----------------*************-------------***************----------------------------------------
141
 
142
 
143
  file_type = st.radio("Select Which Type of Memory You Prefer:", ("Semantic", "Episodic"))
@@ -362,36 +409,6 @@ roleplaying_glossary = {
362
 
363
 
364
 
365
- # HTML5 based Speech Synthesis (Text to Speech in Browser)
366
- @st.cache_resource
367
- def SpeechSynthesis(result):
368
- documentHTML5='''
369
- <!DOCTYPE html>
370
- <html>
371
- <head>
372
- <title>Read It Aloud</title>
373
- <script type="text/javascript">
374
- function readAloud() {
375
- const text = document.getElementById("textArea").value;
376
- const speech = new SpeechSynthesisUtterance(text);
377
- window.speechSynthesis.speak(speech);
378
- }
379
- </script>
380
- </head>
381
- <body>
382
- <h1>πŸ”Š Read It Aloud</h1>
383
- <textarea id="textArea" rows="10" cols="80">
384
- '''
385
- documentHTML5 = documentHTML5 + result
386
- documentHTML5 = documentHTML5 + '''
387
- </textarea>
388
- <br>
389
- <button onclick="readAloud()">πŸ”Š Read Aloud</button>
390
- </body>
391
- </html>
392
- '''
393
- components.html(documentHTML5, width=1280, height=300)
394
-
395
 
396
  @st.cache_resource
397
  def get_table_download_link(file_path):
@@ -1378,7 +1395,7 @@ What is SORA?
1378
  #example_input = st.text_input("Enter your prompt text:", value=prompt, help="Enter text to get a response.")
1379
  #example_input = st.text_area("Enter Prompt :", '', height=100
1380
 
1381
- # Search History Text Input
1382
  session_state = {}
1383
  if "search_queries" not in session_state:
1384
  session_state["search_queries"] = []
@@ -1388,12 +1405,10 @@ What is SORA?
1388
 
1389
  # Search AI
1390
  query=example_input
1391
- try:
1392
- if query:
1393
- search_arxiv(query)
1394
- search_glossary(query)
1395
- except:
1396
- st.markdown(' ')
1397
 
1398
  st.write("Search history:")
1399
  for example_input in session_state["search_queries"]:
 
79
  with open(file_name, "r") as file:
80
  content = file.read()
81
  return content
82
+
83
+
84
+
85
+
86
  #import streamlit as st
87
  #from gradio_client import Client
88
  #client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
 
95
  #)
96
  #st.markdown(result)
97
 
98
+
99
+
100
+
101
+ # HTML5 based Speech Synthesis (Text to Speech in Browser)
102
+ @st.cache_resource
103
+ def SpeechSynthesis(result):
104
+ documentHTML5='''
105
+ <!DOCTYPE html>
106
+ <html>
107
+ <head>
108
+ <title>Read It Aloud</title>
109
+ <script type="text/javascript">
110
+ function readAloud() {
111
+ const text = document.getElementById("textArea").value;
112
+ const speech = new SpeechSynthesisUtterance(text);
113
+ window.speechSynthesis.speak(speech);
114
+ }
115
+ </script>
116
+ </head>
117
+ <body>
118
+ <h1>πŸ”Š Read It Aloud</h1>
119
+ <textarea id="textArea" rows="10" cols="80">
120
+ '''
121
+ documentHTML5 = documentHTML5 + result
122
+ documentHTML5 = documentHTML5 + '''
123
+ </textarea>
124
+ <br>
125
+ <button onclick="readAloud()">πŸ”Š Read Aloud</button>
126
+ </body>
127
+ </html>
128
+ '''
129
+ components.html(documentHTML5, width=1280, height=300)
130
+
131
+
132
+
133
+
134
  def search_arxiv(query):
135
  st.title("▢️ Semantic and Episodic Memory System")
136
 
 
152
  )
153
 
154
  # Show ArXiv Scholary Articles! ----------------*************-------------***************----------------------------------------
155
+
156
  st.markdown(result)
157
+
158
+
159
+ arxiv_results = st.text_area("ArXiv Results: ", value=result, height=700)
160
+
161
+
162
  SpeechSynthesis(result) # Search History Reader / Writer IO Memory - Audio at Same time as Reading.
163
 
164
+
165
+ # Show ArXiv Scholary Articles! ----------------*************-------------***************----------------------------------------
166
+
167
  filename=generate_filename(result, "md")
168
  base_filename, ext = os.path.splitext(filename)
169
  with open(f"{base_filename}.md", 'w') as file:
 
185
 
186
 
187
  create_file(filename, query, result, should_save)
 
188
 
189
 
190
  file_type = st.radio("Select Which Type of Memory You Prefer:", ("Semantic", "Episodic"))
 
409
 
410
 
411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412
 
413
  @st.cache_resource
414
  def get_table_download_link(file_path):
 
1395
  #example_input = st.text_input("Enter your prompt text:", value=prompt, help="Enter text to get a response.")
1396
  #example_input = st.text_area("Enter Prompt :", '', height=100
1397
 
1398
+ # Search History to ArXiv
1399
  session_state = {}
1400
  if "search_queries" not in session_state:
1401
  session_state["search_queries"] = []
 
1405
 
1406
  # Search AI
1407
  query=example_input
1408
+ if query:
1409
+ search_arxiv(query)
1410
+ search_glossary(query)
1411
+ st.markdown(' ')
 
 
1412
 
1413
  st.write("Search history:")
1414
  for example_input in session_state["search_queries"]: