awacke1's picture
Update app.py
17ab601 verified
raw
history blame
20.9 kB
import streamlit as st
import anthropic
import openai
import base64
from datetime import datetime
import plotly.graph_objects as go
import cv2
import glob
import json
import math
import os
import pytz
import random
import re
import requests
import streamlit.components.v1 as components
import textract
import time
import zipfile
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from moviepy.editor import VideoFileClip
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
# Configuration constants
Site_Name = '🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI'
title = "🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI"
helpURL = 'https://huggingface.co/awacke1'
bugURL = 'https://huggingface.co/spaces/awacke1'
icons = 'πŸš²πŸ†'
# Speech Recognition HTML Template
speech_recognition_html = """
<!DOCTYPE html>
<html>
<head>
<style>
body { font-family: sans-serif; padding: 20px; }
button { padding: 10px 20px; margin: 10px 5px; }
#status { margin: 10px 0; padding: 10px; background: #e8f5e9; }
#output {
white-space: pre-wrap;
padding: 15px;
background: #f5f5f5;
margin: 10px 0;
min-height: 100px;
max-height: 300px;
overflow-y: auto;
}
</style>
</head>
<body>
<div>
<button id="startBtn">Start</button>
<button id="stopBtn" disabled>Stop</button>
<button id="clearBtn">Clear</button>
</div>
<div id="status">Ready</div>
<div id="output"></div>
<script>
const startBtn = document.getElementById('startBtn');
const stopBtn = document.getElementById('stopBtn');
const clearBtn = document.getElementById('clearBtn');
const status = document.getElementById('status');
const output = document.getElementById('output');
let recognition;
let fullTranscript = '';
if ('webkitSpeechRecognition' in window) {
recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.interimResults = true;
recognition.onstart = () => {
status.textContent = 'Listening...';
startBtn.disabled = true;
stopBtn.disabled = false;
};
recognition.onend = () => {
status.textContent = 'Click Start to begin';
startBtn.disabled = false;
stopBtn.disabled = true;
};
recognition.onresult = (event) => {
let interim = '';
let final = '';
for (let i = event.resultIndex; i < event.results.length; i++) {
if (event.results[i].isFinal) {
final += event.results[i][0].transcript + ' ';
fullTranscript += event.results[i][0].transcript + ' ';
} else {
interim += event.results[i][0].transcript;
}
}
if (final) {
// Send to Streamlit
window.parent.postMessage({
type: 'final_transcript',
text: fullTranscript
}, '*');
}
output.textContent = fullTranscript + interim;
output.scrollTop = output.scrollHeight;
};
recognition.onerror = (event) => {
status.textContent = 'Error: ' + event.error;
startBtn.disabled = false;
stopBtn.disabled = true;
};
// Button handlers
startBtn.onclick = () => {
try {
recognition.start();
} catch (e) {
status.textContent = 'Error starting: ' + e;
}
};
stopBtn.onclick = () => recognition.stop();
clearBtn.onclick = () => {
fullTranscript = '';
output.textContent = '';
window.parent.postMessage({
type: 'final_transcript',
text: ''
}, '*');
};
// Auto-start
document.addEventListener('DOMContentLoaded', () => {
setTimeout(() => startBtn.click(), 1000);
});
} else {
status.textContent = 'Speech recognition not supported in this browser';
startBtn.disabled = true;
stopBtn.disabled = true;
}
</script>
</body>
</html>
"""
# Streamlit page configuration
st.set_page_config(
page_title=title,
page_icon=icons,
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': helpURL,
'Report a bug': bugURL,
'About': title
}
)
# Load environment variables
load_dotenv()
# OpenAI setup
openai.api_key = os.getenv('OPENAI_API_KEY')
if openai.api_key == None:
openai.api_key = st.secrets['OPENAI_API_KEY']
openai_client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY'),
organization=os.getenv('OPENAI_ORG_ID')
)
# Claude setup
anthropic_key = os.getenv("ANTHROPIC_API_KEY_3")
if anthropic_key == None:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# Initialize session states
if 'transcript_history' not in st.session_state:
st.session_state.transcript_history = []
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-4-vision-preview"
if "messages" not in st.session_state:
st.session_state.messages = []
if 'voice_transcript' not in st.session_state:
st.session_state.voice_transcript = ""
# Main processing functions
def process_with_gpt(text_input):
"""Process text with GPT-4."""
if text_input:
st.session_state.messages.append({"role": "user", "content": text_input})
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
completion = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
stream=False
)
return_text = completion.choices[0].message.content
st.write("GPT-4: " + return_text)
filename = generate_filename("GPT-4: " + return_text, "md")
create_file(filename, text_input, return_text)
st.session_state.messages.append({"role": "assistant", "content": return_text})
return return_text
def process_with_claude(text_input):
"""Process text with Claude."""
if text_input:
with st.chat_message("user"):
st.markdown(text_input)
with st.chat_message("assistant"):
response = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[
{"role": "user", "content": text_input}
]
)
response_text = response.content[0].text
st.write("Claude: " + response_text)
filename = generate_filename("Claude: " + response_text, "md")
create_file(filename, text_input, response_text)
st.session_state.chat_history.append({
"user": text_input,
"claude": response_text
})
return response_text
def perform_ai_lookup(query):
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
start_time = time.strftime("%Y-%m-%d %H:%M:%S")
response1 = client.predict(
query,
20,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)
Question = '### πŸ”Ž ' + query + '\r\n'
References = response1[0]
ReferenceLinks = extract_urls(References)
RunSecondQuery = True
results = ''
if RunSecondQuery:
response2 = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
if len(response2) > 10:
Answer = response2
results = Question + '\r\n' + Answer + '\r\n' + References + '\r\n' + ReferenceLinks
st.markdown(results)
end_time = time.strftime("%Y-%m-%d %H:%M:%S")
start_timestamp = time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S"))
end_timestamp = time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S"))
elapsed_seconds = end_timestamp - start_timestamp
st.write('πŸ”Run of Multi-Agent System Paper Summary Spec is Complete')
st.write(f"Start time: {start_time}")
st.write(f"Finish time: {end_time}")
st.write(f"Elapsed time: {elapsed_seconds:.2f} seconds")
filename = generate_filename(query, "md")
create_file(filename, query, results)
return results
# Main function
def main():
st.sidebar.markdown("### 🚲BikeAIπŸ† Claude and GPT Multi-Agent Research AI")
tab_main = st.radio("Choose Action:",
["🎀 Voice Input", "πŸ’¬ Chat", "πŸ“Έ Media Gallery", "πŸ” Search ArXiv", "πŸ“ File Editor"],
horizontal=True)
if tab_main == "🎀 Voice Input":
st.subheader("Voice Recognition")
# Display speech recognition component
st.components.v1.html(speech_recognition_html, height=400)
# Transcript receiver
transcript_receiver = st.components.v1.html("""
<script>
window.addEventListener('message', function(e) {
if (e.data && e.data.type === 'final_transcript') {
window.Streamlit.setComponentValue(e.data.text);
}
});
</script>
""", height=0)
# Update session state if new transcript received
if transcript_receiver:
st.session_state.voice_transcript = transcript_receiver
# Display transcript
st.markdown("### Processed Voice Input:")
st.text_area(
"Voice Transcript",
value=st.session_state.voice_transcript if isinstance(st.session_state.voice_transcript, str) else "",
height=100
)
# Process buttons
col1, col2, col3 = st.columns(3)
with col1:
if st.button("Process with GPT"):
if st.session_state.voice_transcript:
st.markdown("### GPT Response:")
gpt_response = process_with_gpt(st.session_state.voice_transcript)
st.markdown(gpt_response)
with col2:
if st.button("Process with Claude"):
if st.session_state.voice_transcript:
st.markdown("### Claude Response:")
claude_response = process_with_claude(st.session_state.voice_transcript)
st.markdown(claude_response)
with col3:
if st.button("Clear Transcript"):
st.session_state.voice_transcript = ""
st.experimental_rerun()
if st.session_state.voice_transcript:
if st.button("Search ArXiv"):
st.markdown("### ArXiv Search Results:")
arxiv_results = perform_ai_lookup(st.session_state.voice_transcript)
st.markdown(arxiv_results)
elif tab_main == "πŸ’¬ Chat":
# Model Selection
model_choice = st.sidebar.radio(
"Choose AI Model:",
["GPT-4", "Claude-3", "GPT+Claude+Arxiv"]
)
# Chat Interface
user_input = st.text_area("Message:", height=100)
if st.button("Send πŸ“¨"):
if user_input:
if model_choice == "GPT-4":
gpt_response = process_with_gpt(user_input)
elif model_choice == "Claude-3":
claude_response = process_with_claude(user_input)
else: # Both + Arxiv
col1, col2, col3 = st.columns(3)
with col1:
st.subheader("GPT-4:")
try:
gpt_response = process_with_gpt(user_input)
except:
st.write('GPT-4 out of tokens')
with col2:
st.subheader("Claude-3:")
try:
claude_response = process_with_claude(user_input)
except:
st.write('Claude-3 out of tokens')
with col3:
st.subheader("Arxiv Search:")
with st.spinner("Searching ArXiv..."):
results = perform_ai_lookup(user_input)
st.markdown(results)
elif tab_main == "πŸ“Έ Media Gallery":
create_media_gallery()
elif tab_main == "πŸ” Search ArXiv":
query = st.text_input("Enter your research query:")
if query:
with st.spinner("Searching ArXiv..."):
results = perform_ai_lookup(query)
st.markdown(results)
elif tab_main == "πŸ“ File Editor":
if hasattr(st.session_state, 'current_file'):
st.subheader(f"Editing: {st.session_state.current_file}")
new_content = st.text_area("Content:", st.session_state.file_content, height=300)
if st.button("Save Changes"):
with open(st.session_state.current_file, 'w', encoding='utf-8') as file:
file.write(new_content)
st.success("File updated successfully!")
# Always show file manager in sidebar
display_file_manager()
def create_media_gallery():
"""Create the media gallery interface."""
st.header("🎬 Media Gallery")
tabs = st.tabs(["πŸ–ΌοΈ Images", "🎡 Audio", "πŸŽ₯ Video"])
with tabs[0]:
image_files = glob.glob("*.png") + glob.glob("*.jpg")
if image_files:
num_cols = st.slider("Number of columns", 1, 5, 3)
cols = st.columns(num_cols)
for idx, image_file in enumerate(image_files):
with cols[idx % num_cols]:
img = Image.open(image_file)
st.image(img, use_container_width=True)
if st.button(f"Analyze {os.path.basename(image_file)}"):
analysis = process_image(image_file,
"Describe this image in detail and identify key elements.")
st.markdown(analysis)
with tabs[1]:
audio_files = glob.glob("*.mp3") + glob.glob("*.wav")
for audio_file in audio_files:
with st.expander(f"🎡 {os.path.basename(audio_file)}"):
st.markdown(get_media_html(audio_file, "audio"), unsafe_allow_html=True)
if st.button(f"Transcribe {os.path.basename(audio_file)}"):
with open(audio_file, "rb") as f:
transcription = process_audio(f)
st.write(transcription)
with tabs[2]:
video_files = glob.glob("*.mp4")
for video_file in video_files:
with st.expander(f"πŸŽ₯ {os.path.basename(video_file)}"):
st.markdown(get_media_html(video_file, "video"), unsafe_allow_html=True)
if st.button(f"Analyze {os.path.basename(video_file)}"):
analysis = process_video_with_gpt(video_file,
"Describe what's happening in this video.")
st.markdown(analysis)
def get_media_html(media_path, media_type="video", width="100%"):
"""Generate HTML for media player."""
media_data = base64.b64encode(open(media_path, 'rb').read()).decode()
if media_type == "video":
return f'''
<video width="{width}" controls autoplay muted loop>
<source src="data:video/mp4;base64,{media_data}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
else: # audio
return f'''
<audio controls style="width: {width};">
<source src="data:audio/mpeg;base64,{media_data}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
'''
def display_file_manager():
"""Display file management sidebar."""
st.sidebar.title("πŸ“ File Management")
all_files = glob.glob("*.md")
all_files.sort(reverse=True)
if st.sidebar.button("πŸ—‘ Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
if st.sidebar.button("⬇️ Download All"):
zip_file = create_zip_of_files(all_files)
st.sidebar.markdown(get_download_link(zip_file), unsafe_allow_html=True)
for file in all_files:
col1, col2, col3, col4 = st.sidebar.columns([1,3,1,1])
with col1:
if st.button("🌐", key=f"view_{file}"):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col2:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col3:
if st.button("πŸ“‚", key=f"edit_{file}"):
st.session_state.current_file = file
st.session_state.file_content = load_file(file)
with col4:
if st.button("πŸ—‘", key=f"delete_{file}"):
os.remove(file)
st.rerun()
def generate_filename(prompt, file_type):
"""Generate a filename based on prompt and time."""
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = re.sub(r'[<>:"/\\|?*\n]', ' ', prompt)
safe_prompt = re.sub(r'\s+', ' ', replaced_prompt).strip()[:230]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
def create_file(filename, prompt, response):
"""Create and save a file."""
with open(filename, 'w', encoding='utf-8') as file:
file.write(prompt + "\n\n" + response)
def load_file(file_name):
"""Load file content."""
with open(file_name, "r", encoding='utf-8') as file:
content = file.read()
return content
def create_zip_of_files(files):
"""Create zip archive of files."""
zip_name = "all_files.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in files:
zipf.write(file)
return zip_name
def get_download_link(file):
"""Create download link for file."""
with open(file, "rb") as f:
contents = f.read()
b64 = base64.b64encode(contents).decode()
return f'<a href="data:file/txt;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}πŸ“‚</a>'
def extract_urls(text):
"""Extract URLs from text."""
try:
date_pattern = re.compile(r'### (\d{2} \w{3} \d{4})')
abs_link_pattern = re.compile(r'\[(.*?)\]\((https://arxiv\.org/abs/\d+\.\d+)\)')
pdf_link_pattern = re.compile(r'\[⬇️\]\((https://arxiv\.org/pdf/\d+\.\d+)\)')
title_pattern = re.compile(r'### \d{2} \w{3} \d{4} \| \[(.*?)\]')
date_matches = date_pattern.findall(text)
abs_link_matches = abs_link_pattern.findall(text)
pdf_link_matches = pdf_link_pattern.findall(text)
title_matches = title_pattern.findall(text)
markdown_text = ""
for i in range(len(date_matches)):
date = date_matches[i]
title = title_matches[i]
abs_link = abs_link_matches[i][1]
pdf_link = pdf_link_matches[i]
markdown_text += f"**Date:** {date}\n\n"
markdown_text += f"**Title:** {title}\n\n"
markdown_text += f"**Abstract Link:** [{abs_link}]({abs_link})\n\n"
markdown_text += f"**PDF Link:** [{pdf_link}]({pdf_link})\n\n"
markdown_text += "---\n\n"
return markdown_text
except:
return ''
# Run the application
if __name__ == "__main__":
main()