Spaces:
Sleeping
Sleeping
import streamlit as st | |
import json | |
import pandas as pd | |
import streamlit.components.v1 as components | |
# Initialize session state for tracking the last clicked row | |
if 'last_clicked_row' not in st.session_state: | |
st.session_state['last_clicked_row'] = None | |
# Function to load JSONL file into a DataFrame | |
def load_jsonl(file_path): | |
data = [] | |
with open(file_path, 'r') as f: | |
for line in f: | |
data.append(json.loads(line)) | |
return pd.DataFrame(data) | |
# Function to filter DataFrame by keyword | |
def filter_by_keyword(df, keyword): | |
return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)] | |
# Function to generate HTML with textarea | |
def generate_html_with_textarea(text_to_speak): | |
return f''' | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Read It Aloud</title> | |
<script type="text/javascript"> | |
function readAloud() {{ | |
const text = document.getElementById("textArea").value; | |
const speech = new SpeechSynthesisUtterance(text); | |
window.speechSynthesis.speak(speech); | |
}} | |
</script> | |
</head> | |
<body> | |
<h1>π Read It Aloud</h1> | |
<textarea id="textArea" rows="10" cols="80"> | |
{text_to_speak} | |
</textarea> | |
<br> | |
<button onclick="readAloud()">π Read Aloud</button> | |
</body> | |
</html> | |
''' | |
# Streamlit App π | |
st.title("AI Medical Explorer with Speech Synthesis π") | |
# Dropdown for file selection | |
file_option = st.selectbox("Select file:", ["usmle_16.2MB.jsonl", "usmle_2.08MB.jsonl"]) | |
st.write(f"You selected: {file_option}") | |
# Load data | |
large_data = load_jsonl("usmle_16.2MB.jsonl") | |
small_data = load_jsonl("usmle_2.08MB.jsonl") | |
data = large_data if file_option == "usmle_16.2MB.jsonl" else small_data | |
# Top 20 healthcare terms for USMLE | |
top_20_terms = ['Heart', 'Lung', 'Pain', 'Memory', 'Kidney', 'Diabetes', 'Cancer', 'Infection', 'Virus', 'Bacteria', 'Gastrointestinal', 'Skin', 'Blood', 'Surgery'] | |
# Create Expander and Columns UI for terms | |
with st.expander("Search by Common Terms π"): | |
cols = st.columns(4) | |
for term in top_20_terms: | |
with cols[top_20_terms.index(term) % 4]: | |
if st.button(f"{term}"): | |
filtered_data = filter_by_keyword(data, term) | |
st.write(f"Filter on '{term}' π") | |
with st.sidebar: | |
st.dataframe(filtered_data) | |
if not filtered_data.empty: | |
html_blocks = [] | |
for idx, row in filtered_data.iterrows(): | |
# Extracting fields from the row | |
question_number = idx + 1 # Assuming idx represents the question number | |
question = row.get("question", "No question field") | |
answer = row.get("answer", "No answer field") | |
options = row.get("options", {}) | |
# Formatting options dictionary into a string | |
options_text = "<br>".join([f"{key}: {value}" for key, value in options.items()]) | |
# Concatenating with labels | |
question_text = (f"QuestionNumber: {question_number}<br>" | |
f"Question: {question}<br>" | |
f"Options: {options_text}<br>" | |
f"Answer: {answer}") | |
# Generating HTML content | |
documentHTML5 = generate_html_with_textarea(question_text) | |
html_blocks.append(documentHTML5) | |
all_html = ''.join(html_blocks) | |
components.html(all_html, width=1280, height=1024) | |
# Text input for search keyword | |
search_keyword = st.text_input("Or, enter a keyword to filter data:") | |
if st.button("Search π΅οΈββοΈ"): | |
filtered_data = filter_by_keyword(data, search_keyword) | |
st.write(f"Filtered Dataset by '{search_keyword}' π") | |
st.dataframe(filtered_data) | |
if not filtered_data.empty: | |
html_blocks = [] | |
for idx, row in filtered_data.iterrows(): | |
question_text = row.get("question", "No question field") | |
documentHTML5 = generate_html_with_textarea(question_text) | |
html_blocks.append(documentHTML5) | |
all_html = ''.join(html_blocks) | |
components.html(all_html, width=1280, height=1024) | |
# Inject HTML5 and JavaScript for styling | |
st.markdown(""" | |
<style> | |
.big-font { | |
font-size:24px !important; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Markdown and emojis for the case presentation | |
st.markdown("# π₯ Case Study: 32-year-old Woman's Wellness Check") | |
st.markdown("## π Patient Information") | |
st.markdown(""" | |
- **Age**: 32 | |
- **Gender**: Female | |
- **Past Medical History**: Asthma, Hypertension, Anxiety | |
- **Current Medications**: Albuterol, Fluticasone, Hydrochlorothiazide, Lisinopril, Fexofenadine | |
- **Vitals** | |
- **Temperature**: 99.5Β°F (37.5Β°C) | |
- **Blood Pressure**: 165/95 mmHg | |
- **Pulse**: 70/min | |
- **Respirations**: 15/min | |
- **Oxygen Saturation**: 98% on room air | |
""") | |
# Clinical Findings | |
st.markdown("## π Clinical Findings") | |
st.markdown(""" | |
- Cardiac exam reveals a S1 and S2 heart sound with a normal rate. | |
- Pulmonary exam is clear to auscultation bilaterally with good air movement. | |
- Abdominal exam reveals a bruit, normoactive bowel sounds, and an audible borborygmus. | |
- Neurological exam reveals cranial nerves II-XII as grossly intact with normal strength and reflexes in the upper and lower extremities. | |
""") | |
# Next Step Options | |
st.markdown("## π€ What is the best next step in management?") | |
# Multiple Choice | |
options = ["Blood Test", "MRI Scan", "Ultrasound with Doppler", "Immediate Surgery"] | |
choice = st.selectbox("", options) | |
# Explanation | |
if st.button("Submit"): | |
if choice == "Ultrasound with Doppler": | |
st.success("Correct! π") | |
st.markdown(""" | |
### Explanation | |
The patient's high blood pressure coupled with an abdominal bruit suggests the possibility of renal artery stenosis. | |
An **Ultrasound with Doppler** is the best next step for assessing blood flow and evaluating for renal artery stenosis. | |
""") | |
else: | |
st.error("Incorrect. π") | |
st.markdown(""" | |
The best next step is **Ultrasound with Doppler**. | |
""") |