Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import gdown as gdown
|
4 |
+
import nltk
|
5 |
+
import streamlit as st
|
6 |
+
from nltk.tokenize import sent_tokenize
|
7 |
+
|
8 |
+
from source.pipeline import MultiLabelPipeline, inputs_to_dataset
|
9 |
+
|
10 |
+
|
11 |
+
def download_models(ids):
|
12 |
+
"""
|
13 |
+
Download all models.
|
14 |
+
:param ids: name and links of models
|
15 |
+
:return:
|
16 |
+
"""
|
17 |
+
|
18 |
+
# Download sentence tokenizer
|
19 |
+
nltk.download('punkt')
|
20 |
+
|
21 |
+
# Download model from drive if not stored locally
|
22 |
+
for key in ids:
|
23 |
+
if not os.path.isfile(f"model/{key}.pt"):
|
24 |
+
url = f"https://drive.google.com/uc?id={ids[key]}"
|
25 |
+
gdown.download(url=url, output=f"model/{key}.pt")
|
26 |
+
|
27 |
+
|
28 |
+
@st.cache
|
29 |
+
def load_labels():
|
30 |
+
"""
|
31 |
+
Load model labels.
|
32 |
+
:return:
|
33 |
+
"""
|
34 |
+
|
35 |
+
return [
|
36 |
+
"admiration",
|
37 |
+
"amusement",
|
38 |
+
"anger",
|
39 |
+
"annoyance",
|
40 |
+
"approval",
|
41 |
+
"caring",
|
42 |
+
"confusion",
|
43 |
+
"curiosity",
|
44 |
+
"desire",
|
45 |
+
"disappointment",
|
46 |
+
"disapproval",
|
47 |
+
"disgust",
|
48 |
+
"embarrassment",
|
49 |
+
"excitement",
|
50 |
+
"fear",
|
51 |
+
"gratitude",
|
52 |
+
"grief",
|
53 |
+
"joy",
|
54 |
+
"love",
|
55 |
+
"nervousness",
|
56 |
+
"optimism",
|
57 |
+
"pride",
|
58 |
+
"realization",
|
59 |
+
"relief",
|
60 |
+
"remorse",
|
61 |
+
"sadness",
|
62 |
+
"surprise",
|
63 |
+
"neutral"
|
64 |
+
]
|
65 |
+
|
66 |
+
|
67 |
+
@st.cache(allow_output_mutation=True)
|
68 |
+
def load_model(model_path):
|
69 |
+
"""
|
70 |
+
Load model and cache it.
|
71 |
+
:param model_path: path to model
|
72 |
+
:return:
|
73 |
+
"""
|
74 |
+
|
75 |
+
model = MultiLabelPipeline(model_path=model_path)
|
76 |
+
|
77 |
+
return model
|
78 |
+
|
79 |
+
|
80 |
+
# Page config
|
81 |
+
st.set_page_config(layout="centered")
|
82 |
+
st.title("Multiclass Emotion Classification")
|
83 |
+
st.write("DeepMind Language Perceiver for Multiclass Emotion Classification (Eng). ")
|
84 |
+
|
85 |
+
maintenance = False
|
86 |
+
if maintenance:
|
87 |
+
st.write("Unavailable for now (file downloads limit). ")
|
88 |
+
else:
|
89 |
+
# Variables
|
90 |
+
ids = {'perceiver-go-emotions': st.secrets['model']}
|
91 |
+
labels = load_labels()
|
92 |
+
|
93 |
+
# Download all models from drive
|
94 |
+
download_models(ids)
|
95 |
+
|
96 |
+
# Display labels
|
97 |
+
st.markdown(f"__Labels:__ {', '.join(labels)}")
|
98 |
+
|
99 |
+
# Model selection
|
100 |
+
left, right = st.columns([4, 2])
|
101 |
+
inputs = left.text_area('', max_chars=4096, value='This is a space about multiclass emotion classification. Write '
|
102 |
+
'something here to see what happens!')
|
103 |
+
model_path = right.selectbox('', options=[k for k in ids], index=0, help='Model to use. ')
|
104 |
+
split = right.checkbox('Split into sentences', value=True)
|
105 |
+
model = load_model(model_path=f"model/{model_path}.pt")
|
106 |
+
right.write(model.device)
|
107 |
+
|
108 |
+
if split:
|
109 |
+
if not inputs.isspace() and inputs != "":
|
110 |
+
with st.spinner('Processing text... This may take a while.'):
|
111 |
+
left.write(model(inputs_to_dataset(sent_tokenize(inputs)), batch_size=1))
|
112 |
+
else:
|
113 |
+
if not inputs.isspace() and inputs != "":
|
114 |
+
with st.spinner('Processing text... This may take a while.'):
|
115 |
+
left.write(model(inputs_to_dataset([inputs]), batch_size=1))
|