Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,13 +2,13 @@ import streamlit as st
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
def load_orca_dataset():
|
| 7 |
st.info("Loading dataset... This may take a while.")
|
| 8 |
return load_dataset("microsoft/orca-agentinstruct-1M-v1")
|
| 9 |
|
| 10 |
@st.cache_data
|
| 11 |
-
|
| 12 |
def load_model_and_tokenizer(model_name):
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
@@ -40,11 +40,17 @@ def main():
|
|
| 40 |
if "dataset" in st.session_state:
|
| 41 |
dataset = st.session_state["dataset"]
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
st.subheader("Dataset Explorer")
|
| 44 |
-
st.write(
|
|
|
|
| 45 |
|
| 46 |
sample_size = st.slider("Number of Samples to Display", min_value=1, max_value=20, value=5)
|
| 47 |
-
st.write(dataset[
|
| 48 |
|
| 49 |
st.subheader("Model Evaluator")
|
| 50 |
model_name = st.text_input("Enter Hugging Face Model Name", value="distilbert-base-uncased-finetuned-sst-2-english")
|
|
@@ -53,7 +59,7 @@ def main():
|
|
| 53 |
if st.button("Load Model and Evaluate"):
|
| 54 |
tokenizer, model = load_model_and_tokenizer(model_name)
|
| 55 |
|
| 56 |
-
results = evaluate_model(dataset[
|
| 57 |
|
| 58 |
st.subheader("Evaluation Results")
|
| 59 |
st.write(results)
|
|
|
|
| 2 |
from datasets import load_dataset
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
import torch
|
| 5 |
+
import pandas as pd
|
| 6 |
|
| 7 |
def load_orca_dataset():
|
| 8 |
st.info("Loading dataset... This may take a while.")
|
| 9 |
return load_dataset("microsoft/orca-agentinstruct-1M-v1")
|
| 10 |
|
| 11 |
@st.cache_data
|
|
|
|
| 12 |
def load_model_and_tokenizer(model_name):
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 14 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
| 40 |
if "dataset" in st.session_state:
|
| 41 |
dataset = st.session_state["dataset"]
|
| 42 |
|
| 43 |
+
# List available splits
|
| 44 |
+
available_splits = list(dataset.keys())
|
| 45 |
+
st.sidebar.subheader("Available Dataset Splits")
|
| 46 |
+
selected_split = st.sidebar.selectbox("Select Split", available_splits)
|
| 47 |
+
|
| 48 |
st.subheader("Dataset Explorer")
|
| 49 |
+
st.write(f"Displaying information for split: `{selected_split}`")
|
| 50 |
+
st.write(dataset[selected_split].info)
|
| 51 |
|
| 52 |
sample_size = st.slider("Number of Samples to Display", min_value=1, max_value=20, value=5)
|
| 53 |
+
st.write(dataset[selected_split].shuffle(seed=42).select(range(sample_size)))
|
| 54 |
|
| 55 |
st.subheader("Model Evaluator")
|
| 56 |
model_name = st.text_input("Enter Hugging Face Model Name", value="distilbert-base-uncased-finetuned-sst-2-english")
|
|
|
|
| 59 |
if st.button("Load Model and Evaluate"):
|
| 60 |
tokenizer, model = load_model_and_tokenizer(model_name)
|
| 61 |
|
| 62 |
+
results = evaluate_model(dataset[selected_split].shuffle(seed=42).select(range(max_samples)), tokenizer, model, max_samples)
|
| 63 |
|
| 64 |
st.subheader("Evaluation Results")
|
| 65 |
st.write(results)
|