Spaces:
Sleeping
Sleeping
import streamlit as st | |
from datasets import load_dataset | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import torch | |
import pandas as pd | |
def load_orca_dataset(): | |
st.info("Loading dataset... This may take a while.") | |
return load_dataset("microsoft/orca-agentinstruct-1M-v1") | |
def load_model_and_tokenizer(model_name): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
return tokenizer, model | |
def evaluate_model(ds, tokenizer, model, max_samples, text_field): | |
st.info("Evaluating the model...") | |
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) | |
results = [] | |
for i, example in enumerate(ds): | |
if i >= max_samples: | |
break | |
input_text = example[text_field] | |
result = classifier(input_text)[0] | |
results.append({"input": input_text, "label": result["label"], "score": result["score"]}) | |
return results | |
def main(): | |
st.title("Orca Dataset Browser and Model Evaluator") | |
st.sidebar.header("Configuration") | |
load_dataset_btn = st.sidebar.button("Load Dataset") | |
if load_dataset_btn: | |
dataset = load_orca_dataset() | |
st.session_state["dataset"] = dataset | |
if "dataset" in st.session_state: | |
dataset = st.session_state["dataset"] | |
# List available splits | |
available_splits = list(dataset.keys()) | |
st.sidebar.subheader("Available Dataset Splits") | |
selected_split = st.sidebar.selectbox("Select Split", available_splits) | |
st.subheader("Dataset Explorer") | |
st.write(f"Displaying information for split: `{selected_split}`") | |
st.write(dataset[selected_split].info) | |
# Determine available fields | |
sample_entry = dataset[selected_split][0] | |
st.sidebar.subheader("Available Fields in Dataset") | |
available_fields = list(sample_entry.keys()) | |
st.sidebar.write(available_fields) | |
text_field = st.sidebar.selectbox("Select Text Field", available_fields) | |
sample_size = st.slider("Number of Samples to Display", min_value=1, max_value=20, value=5) | |
st.write(dataset[selected_split].shuffle(seed=42).select(range(sample_size))) | |
st.subheader("Model Evaluator") | |
model_name = st.text_input("Enter Hugging Face Model Name", value="distilbert-base-uncased-finetuned-sst-2-english") | |
max_samples = st.number_input("Number of Samples to Evaluate", min_value=1, max_value=100, value=10) | |
if st.button("Load Model and Evaluate"): | |
tokenizer, model = load_model_and_tokenizer(model_name) | |
results = evaluate_model(dataset[selected_split].shuffle(seed=42).select(range(max_samples)), tokenizer, model, max_samples, text_field) | |
st.subheader("Evaluation Results") | |
st.write(results) | |
st.download_button( | |
label="Download Results as CSV", | |
data=pd.DataFrame(results).to_csv(index=False), | |
file_name="evaluation_results.csv", | |
mime="text/csv", | |
) | |
if __name__ == "__main__": | |
main() | |