Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
from __future__ import annotations
|
3 |
+
import os, random, glob, re, json, base64
|
4 |
+
from datetime import datetime
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image
|
8 |
+
import spaces
|
9 |
+
import torch
|
10 |
+
import pandas as pd
|
11 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
12 |
+
|
13 |
+
DESCRIPTION = """
|
14 |
+
# 🎨 ArtForge: AI-Powered Masterpiece Gallery
|
15 |
+
|
16 |
+
Create, curate, and compete with AI-generated art using OpenDalle V1.1. Join our creative multiplayer experience! 🖼️🏆✨
|
17 |
+
|
18 |
+
This demo showcases the capabilities of [OpenDalle V1.1](https://huggingface.co/dataautogpt3/OpenDalleV1.1) by @dataautogpt3, a powerful merge of several models designed for excellent performance.
|
19 |
+
|
20 |
+
**NOTE: The model is licensed under a non-commercial license**
|
21 |
+
|
22 |
+
Created by [mrfakename](https://mrfake.name/) - [Twitter](https://twitter.com/realmrfakename) - [GitHub](https://github.com/fakerybakery/) - [Hugging Face](https://huggingface.co/mrfakename)
|
23 |
+
"""
|
24 |
+
|
25 |
+
if not torch.cuda.is_available():
|
26 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU. Please use <a href=\"https://huggingface.co/spaces/mrfakename/OpenDalleV1.1-GPU-Demo\">the online demo</a> instead.</p>"
|
27 |
+
|
28 |
+
MAX_SEED = np.iinfo(np.int32).max
|
29 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
30 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
31 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
32 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
33 |
+
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1"
|
34 |
+
|
35 |
+
# Global variables for metadata and likes cache
|
36 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
37 |
+
LIKES_CACHE_FILE = "likes_cache.json"
|
38 |
+
|
39 |
+
def load_likes_cache():
|
40 |
+
if os.path.exists(LIKES_CACHE_FILE):
|
41 |
+
with open(LIKES_CACHE_FILE, 'r') as f:
|
42 |
+
return json.load(f)
|
43 |
+
return {}
|
44 |
+
|
45 |
+
def save_likes_cache(cache):
|
46 |
+
with open(LIKES_CACHE_FILE, 'w') as f:
|
47 |
+
json.dump(cache, f)
|
48 |
+
|
49 |
+
likes_cache = load_likes_cache()
|
50 |
+
|
51 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
54 |
+
pipe = DiffusionPipeline.from_pretrained("dataautogpt3/OpenDalleV1.1", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
55 |
+
if ENABLE_REFINER:
|
56 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
57 |
+
if ENABLE_CPU_OFFLOAD:
|
58 |
+
pipe.enable_model_cpu_offload()
|
59 |
+
if ENABLE_REFINER: refiner.enable_model_cpu_offload()
|
60 |
+
else:
|
61 |
+
pipe.to(device)
|
62 |
+
if ENABLE_REFINER: refiner.to(device)
|
63 |
+
if USE_TORCH_COMPILE:
|
64 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
65 |
+
if ENABLE_REFINER: refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
66 |
+
|
67 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
68 |
+
return random.randint(0, MAX_SEED) if randomize_seed else seed
|
69 |
+
|
70 |
+
def create_download_link(filename):
|
71 |
+
with open(filename, "rb") as file:
|
72 |
+
encoded_string = base64.b64encode(file.read()).decode('utf-8')
|
73 |
+
download_link = f'<a href="data:image/png;base64,{encoded_string}" download="{filename}">Download Image</a>'
|
74 |
+
return download_link
|
75 |
+
|
76 |
+
def save_image(image: PIL.Image.Image, prompt: str) -> str:
|
77 |
+
global image_metadata, likes_cache
|
78 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
79 |
+
safe_prompt = re.sub(r'[^\w\s-]', '', prompt.lower())[:50]
|
80 |
+
safe_prompt = re.sub(r'[-\s]+', '-', safe_prompt).strip('-')
|
81 |
+
filename = f"{timestamp}_{safe_prompt}.png"
|
82 |
+
image.save(filename)
|
83 |
+
new_row = pd.DataFrame({
|
84 |
+
'Filename': [filename],
|
85 |
+
'Prompt': [prompt],
|
86 |
+
'Likes': [0],
|
87 |
+
'Dislikes': [0],
|
88 |
+
'Hearts': [0],
|
89 |
+
'Created': [datetime.now()]
|
90 |
+
})
|
91 |
+
image_metadata = pd.concat([image_metadata, new_row], ignore_index=True)
|
92 |
+
likes_cache[filename] = {'likes': 0, 'dislikes': 0, 'hearts': 0}
|
93 |
+
save_likes_cache(likes_cache)
|
94 |
+
return filename
|
95 |
+
|
96 |
+
def get_image_gallery():
|
97 |
+
global image_metadata
|
98 |
+
image_files = image_metadata['Filename'].tolist()
|
99 |
+
return [(file, get_image_caption(file)) for file in image_files if os.path.exists(file)]
|
100 |
+
|
101 |
+
def get_image_caption(filename):
|
102 |
+
global likes_cache, image_metadata
|
103 |
+
if filename in likes_cache:
|
104 |
+
likes = likes_cache[filename]['likes']
|
105 |
+
dislikes = likes_cache[filename]['dislikes']
|
106 |
+
hearts = likes_cache[filename]['hearts']
|
107 |
+
prompt = image_metadata[image_metadata['Filename'] == filename]['Prompt'].values[0]
|
108 |
+
return f"{filename}\nPrompt: {prompt}\n👍 {likes} 👎 {dislikes} ❤️ {hearts}"
|
109 |
+
return filename
|
110 |
+
|
111 |
+
def delete_all_images():
|
112 |
+
global image_metadata, likes_cache
|
113 |
+
for file in image_metadata['Filename']:
|
114 |
+
if os.path.exists(file):
|
115 |
+
os.remove(file)
|
116 |
+
image_metadata = pd.DataFrame(columns=['Filename', 'Prompt', 'Likes', 'Dislikes', 'Hearts', 'Created'])
|
117 |
+
likes_cache = {}
|
118 |
+
save_likes_cache(likes_cache)
|
119 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
120 |
+
|
121 |
+
def delete_image(filename):
|
122 |
+
global image_metadata, likes_cache
|
123 |
+
if filename and os.path.exists(filename):
|
124 |
+
os.remove(filename)
|
125 |
+
image_metadata = image_metadata[image_metadata['Filename'] != filename]
|
126 |
+
if filename in likes_cache:
|
127 |
+
del likes_cache[filename]
|
128 |
+
save_likes_cache(likes_cache)
|
129 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
130 |
+
|
131 |
+
def vote(filename, vote_type):
|
132 |
+
global likes_cache
|
133 |
+
if filename in likes_cache:
|
134 |
+
likes_cache[filename][vote_type.lower()] += 1
|
135 |
+
save_likes_cache(likes_cache)
|
136 |
+
return get_image_gallery(), image_metadata.values.tolist()
|
137 |
+
|
138 |
+
@spaces.GPU(enable_queue=True)
|
139 |
+
def generate(prompt: str, negative_prompt: str = "", prompt_2: str = "", negative_prompt_2: str = "", use_negative_prompt: bool = False, use_prompt_2: bool = False, use_negative_prompt_2: bool = False, seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale_base: float = 5.0, guidance_scale_refiner: float = 5.0, num_inference_steps_base: int = 25, num_inference_steps_refiner: int = 25, apply_refiner: bool = False, progress=gr.Progress(track_tqdm=True)) -> PIL.Image.Image:
|
140 |
+
print(f"** Generating image for: \"{prompt}\" **")
|
141 |
+
generator = torch.Generator().manual_seed(seed)
|
142 |
+
if not use_negative_prompt: negative_prompt = None
|
143 |
+
if not use_prompt_2: prompt_2 = None
|
144 |
+
if not use_negative_prompt_2: negative_prompt_2 = None
|
145 |
+
if not apply_refiner:
|
146 |
+
image = pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="pil").images[0]
|
147 |
+
else:
|
148 |
+
latents = pipe(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, width=width, height=height, guidance_scale=guidance_scale_base, num_inference_steps=num_inference_steps_base, generator=generator, output_type="latent").images
|
149 |
+
image = refiner(prompt=prompt, negative_prompt=negative_prompt, prompt_2=prompt_2, negative_prompt_2=negative_prompt_2, guidance_scale=guidance_scale_refiner, num_inference_steps=num_inference_steps_refiner, image=latents, generator=generator).images[0]
|
150 |
+
filename = save_image(image, prompt)
|
151 |
+
download_link = create_download_link(filename)
|
152 |
+
return image, get_image_gallery(), download_link, image_metadata.values.tolist()
|
153 |
+
|
154 |
+
examples = [
|
155 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} painting of a majestic lighthouse on a rocky coast. Use bold brushstrokes and a vibrant color palette to capture the interplay of light and shadow as the lighthouse beam cuts through a stormy night sky.",
|
156 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} still life featuring a pair of vintage eyeglasses. Focus on the intricate details of the frames and lenses, using a warm color scheme to evoke a sense of nostalgia and wisdom.",
|
157 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} depiction of a rustic wooden stool in a sunlit artist's studio. Emphasize the texture of the wood and the interplay of light and shadow, using a mix of earthy tones and highlights.",
|
158 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} scene viewed through an ornate window frame. Contrast the intricate details of the window with a dreamy, soft-focus landscape beyond, using a palette that transitions from cool interior tones to warm exterior hues.",
|
159 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} close-up study of interlaced fingers. Use a monochromatic color scheme to emphasize the form and texture of the hands, with dramatic lighting to create depth and emotion.",
|
160 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} composition featuring a set of dice in motion. Capture the energy and randomness of the throw, using a dynamic color palette and blurred lines to convey movement.",
|
161 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} interpretation of heaven. Create an ethereal atmosphere with soft, billowing clouds and radiant light, using a palette of celestial blues, golds, and whites.",
|
162 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} portrayal of an ancient, mystical gate. Combine architectural details with elements of fantasy, using a rich, jewel-toned palette to create an air of mystery and magic.",
|
163 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} portrait of a curious cat. Focus on capturing the feline's expressive eyes and sleek form, using a mix of bold and subtle colors to bring out the cat's personality.",
|
164 |
+
f"{random.choice(['Impressionist', 'Cubist', 'Surrealist', 'Abstract Expressionist', 'Pop Art', 'Minimalist', 'Baroque', 'Art Nouveau', 'Pointillist', 'Fauvism'])} abstract representation of toes in sand. Use textured brushstrokes to convey the feeling of warm sand, with a palette inspired by a sun-drenched beach."
|
165 |
+
]
|
166 |
+
|
167 |
+
css = '''
|
168 |
+
.gradio-container {max-width: 1024px !important}
|
169 |
+
h1 {text-align: center}
|
170 |
+
footer {visibility: hidden}
|
171 |
+
'''
|
172 |
+
|
173 |
+
theme = gr.themes.Soft()
|
174 |
+
with gr.Blocks(css=css, theme=theme) as demo:
|
175 |
+
gr.Markdown(DESCRIPTION)
|
176 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1")
|
177 |
+
|
178 |
+
with gr.Tab("Generate Images"):
|
179 |
+
with gr.Group():
|
180 |
+
with gr.Row():
|
181 |
+
prompt = gr.Text(label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False)
|
182 |
+
run_button = gr.Button("Generate", scale=0)
|
183 |
+
result = gr.Image(label="Result", show_label=False)
|
184 |
+
download_link = gr.HTML(label="Download", show_label=False)
|
185 |
+
|
186 |
+
with gr.Accordion("Advanced options", open=False):
|
187 |
+
with gr.Row():
|
188 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
189 |
+
use_prompt_2use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
190 |
+
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
191 |
+
negative_prompt = gr.Text(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False)
|
192 |
+
prompt_2 = gr.Text(label="Prompt 2", max_lines=1, placeholder="Enter your second prompt", visible=False)
|
193 |
+
negative_prompt_2 = gr.Text(label="Negative prompt 2", max_lines=1, placeholder="Enter a second negative prompt", visible=False)
|
194 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
195 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
196 |
+
with gr.Row():
|
197 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
198 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
199 |
+
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
200 |
+
with gr.Row():
|
201 |
+
guidance_scale_base = gr.Slider(label="Guidance scale for base", minimum=1, maximum=20, step=0.1, value=5.0)
|
202 |
+
num_inference_steps_base = gr.Slider(label="Number of inference steps for base", minimum=10, maximum=100, step=1, value=25)
|
203 |
+
with gr.Row(visible=False) as refiner_params:
|
204 |
+
guidance_scale_refiner = gr.Slider(label="Guidance scale for refiner", minimum=1, maximum=20, step=0.1, value=5.0)
|
205 |
+
num_inference_steps_refiner = gr.Slider(label="Number of inference steps for refiner", minimum=10, maximum=100, step=1, value=25)
|
206 |
+
|
207 |
+
with gr.Tab("Gallery and Voting"):
|
208 |
+
image_gallery = gr.Gallery(label="Generated Images", show_label=True, columns=4, height="auto")
|
209 |
+
|
210 |
+
with gr.Row():
|
211 |
+
like_button = gr.Button("👍 Like")
|
212 |
+
dislike_button = gr.Button("👎 Dislike")
|
213 |
+
heart_button = gr.Button("❤️ Heart")
|
214 |
+
delete_image_button = gr.Button("🗑️ Delete Selected Image")
|
215 |
+
|
216 |
+
selected_image = gr.State(None)
|
217 |
+
|
218 |
+
with gr.Tab("Metadata and Management"):
|
219 |
+
metadata_df = gr.Dataframe(
|
220 |
+
label="Image Metadata",
|
221 |
+
headers=["Filename", "Prompt", "Likes", "Dislikes", "Hearts", "Created"],
|
222 |
+
interactive=False
|
223 |
+
)
|
224 |
+
delete_all_button = gr.Button("🗑️ Delete All Images")
|
225 |
+
|
226 |
+
gr.Examples(examples=examples, inputs=prompt, outputs=[result, image_gallery, download_link, metadata_df], fn=generate, cache_examples=CACHE_EXAMPLES)
|
227 |
+
|
228 |
+
use_negative_prompt.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, queue=False, api_name=False)
|
229 |
+
use_prompt_2.change(fn=lambda x: gr.update(visible=x), inputs=use_prompt_2, outputs=prompt_2, queue=False, api_name=False)
|
230 |
+
use_negative_prompt_2.change(fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt_2, outputs=negative_prompt_2, queue=False, api_name=False)
|
231 |
+
apply_refiner.change(fn=lambda x: gr.update(visible=x), inputs=apply_refiner, outputs=refiner_params, queue=False, api_name=False)
|
232 |
+
|
233 |
+
prompt.submit(fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False).then(
|
234 |
+
fn=generate,
|
235 |
+
inputs=[prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner],
|
236 |
+
outputs=[result, image_gallery, download_link, metadata_df]
|
237 |
+
)
|
238 |
+
|
239 |
+
run_button.click(fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, api_name=False).then(
|
240 |
+
fn=generate,
|
241 |
+
inputs=[prompt, negative_prompt, prompt_2, negative_prompt_2, use_negative_prompt, use_prompt_2, use_negative_prompt_2, seed, width, height, guidance_scale_base, guidance_scale_refiner, num_inference_steps_base, num_inference_steps_refiner, apply_refiner],
|
242 |
+
outputs=[result, image_gallery, download_link, metadata_df]
|
243 |
+
)
|
244 |
+
|
245 |
+
image_gallery.select(fn=lambda evt: evt, inputs=[], outputs=[selected_image])
|
246 |
+
|
247 |
+
like_button.click(fn=lambda x: vote(x, 'likes'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
248 |
+
dislike_button.click(fn=lambda x: vote(x, 'dislikes'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
249 |
+
heart_button.click(fn=lambda x: vote(x, 'hearts'), inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
250 |
+
delete_image_button.click(fn=delete_image, inputs=[selected_image], outputs=[image_gallery, metadata_df])
|
251 |
+
delete_all_button.click(fn=delete_all_images, inputs=[], outputs=[image_gallery, metadata_df])
|
252 |
+
|
253 |
+
demo.load(fn=lambda: (get_image_gallery(), image_metadata.values.tolist()), outputs=[image_gallery, metadata_df])
|
254 |
+
|
255 |
+
if __name__ == "__main__":
|
256 |
+
demo.queue(max_size=20).launch(share=True, debug=False)
|