Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import datetime
|
| 4 |
+
import io
|
| 5 |
+
import nltk
|
| 6 |
+
import base64
|
| 7 |
+
import os
|
| 8 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 9 |
+
from nltk.corpus import stopwords
|
| 10 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 11 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
| 12 |
+
|
| 13 |
+
nltk.download('punkt')
|
| 14 |
+
nltk.download('stopwords')
|
| 15 |
+
|
| 16 |
+
def generate_file_name(text, file_type):
|
| 17 |
+
try:
|
| 18 |
+
# Tokenize the text into sentences
|
| 19 |
+
sentences = sent_tokenize(text)
|
| 20 |
+
|
| 21 |
+
# Tokenize the sentences into words and remove stopwords
|
| 22 |
+
words = [word.lower() for sentence in sentences for word in word_tokenize(sentence) if word.isalnum()]
|
| 23 |
+
stop_words = set(stopwords.words('english'))
|
| 24 |
+
filtered_words = [word for word in words if word not in stop_words]
|
| 25 |
+
|
| 26 |
+
# Count word frequencies
|
| 27 |
+
word_freq = nltk.FreqDist(filtered_words)
|
| 28 |
+
|
| 29 |
+
# Get the top 3 most frequent words
|
| 30 |
+
top_words = [word for word, _ in word_freq.most_common(3)]
|
| 31 |
+
|
| 32 |
+
# Generate the file name
|
| 33 |
+
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 34 |
+
file_name = f"{'-'.join(top_words)}_{current_time}.{file_type}"
|
| 35 |
+
return file_name
|
| 36 |
+
except:
|
| 37 |
+
# Fallback to default file naming if an error occurs
|
| 38 |
+
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 39 |
+
file_name = f"text_file_{current_time}.{file_type}"
|
| 40 |
+
return file_name
|
| 41 |
+
|
| 42 |
+
def save_text_as_file(text, file_type):
|
| 43 |
+
file_name = generate_file_name(text, file_type)
|
| 44 |
+
with open(file_name, "w") as file:
|
| 45 |
+
file.write(text)
|
| 46 |
+
st.success(f"Text saved as {file_name}")
|
| 47 |
+
return file_name
|
| 48 |
+
|
| 49 |
+
def save_list_as_excel(text):
|
| 50 |
+
lines = text.split("\n")
|
| 51 |
+
data = []
|
| 52 |
+
for line in lines:
|
| 53 |
+
if line.strip():
|
| 54 |
+
parts = line.split(" - ", 1)
|
| 55 |
+
if len(parts) == 2:
|
| 56 |
+
data.append(parts)
|
| 57 |
+
else:
|
| 58 |
+
data.append([line.strip(), ""])
|
| 59 |
+
df = pd.DataFrame(data, columns=["Character", "Description"])
|
| 60 |
+
file_name = generate_file_name(text, "xlsx")
|
| 61 |
+
df.to_excel(file_name, index=False)
|
| 62 |
+
st.success(f"Character list saved as {file_name}")
|
| 63 |
+
return file_name
|
| 64 |
+
|
| 65 |
+
@st.cache_resource
|
| 66 |
+
def get_download_link(file_path):
|
| 67 |
+
try:
|
| 68 |
+
with open(file_path, 'rb') as file:
|
| 69 |
+
data = file.read()
|
| 70 |
+
b64 = base64.b64encode(data).decode()
|
| 71 |
+
file_name = os.path.basename(file_path)
|
| 72 |
+
ext = os.path.splitext(file_name)[1] # get the file extension
|
| 73 |
+
if ext == '.xlsx':
|
| 74 |
+
mime_type = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
|
| 75 |
+
elif ext == '.csv':
|
| 76 |
+
mime_type = 'text/csv'
|
| 77 |
+
elif ext == '.md':
|
| 78 |
+
mime_type = 'text/markdown'
|
| 79 |
+
else:
|
| 80 |
+
mime_type = 'application/octet-stream' # general binary data type
|
| 81 |
+
href = f'<a href="data:{mime_type};base64,{b64}" download="{file_name}">{file_name}</a>'
|
| 82 |
+
return href
|
| 83 |
+
except:
|
| 84 |
+
return ''
|
| 85 |
+
|
| 86 |
+
def perform_nlp(text):
|
| 87 |
+
sentences = sent_tokenize(text)
|
| 88 |
+
# Topic Modeling
|
| 89 |
+
vectorizer = CountVectorizer(stop_words='english')
|
| 90 |
+
X = vectorizer.fit_transform(sentences)
|
| 91 |
+
lda = LatentDirichletAllocation(n_components=3, random_state=42)
|
| 92 |
+
lda.fit(X)
|
| 93 |
+
topics = lda.transform(X)
|
| 94 |
+
# Display topics
|
| 95 |
+
st.subheader("Topic Modeling")
|
| 96 |
+
for i, topic in enumerate(topics):
|
| 97 |
+
st.write(f"Topic {i+1}:")
|
| 98 |
+
topic_words = ", ".join([vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-6:-1]])
|
| 99 |
+
st.write(topic_words)
|
| 100 |
+
# Word Frequency
|
| 101 |
+
word_freq = pd.Series(" ".join(sentences).split()).value_counts()[:10]
|
| 102 |
+
st.subheader("Word Frequency")
|
| 103 |
+
st.bar_chart(word_freq)
|
| 104 |
+
|
| 105 |
+
def show_files_in_directory():
|
| 106 |
+
st.subheader("Files in Current Directory")
|
| 107 |
+
files = []
|
| 108 |
+
for file in os.listdir("."):
|
| 109 |
+
if file.endswith((".md", ".xlsx", ".csv")):
|
| 110 |
+
file_size = os.path.getsize(file)
|
| 111 |
+
file_modified_time = datetime.datetime.fromtimestamp(os.path.getmtime(file)).strftime("%Y-%m-%d %H:%M:%S")
|
| 112 |
+
files.append({"File Name": get_download_link(file), "Size (bytes)": file_size, "Last Modified": file_modified_time})
|
| 113 |
+
files_df = pd.DataFrame(files)
|
| 114 |
+
st.write(files_df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 115 |
+
|
| 116 |
+
def main():
|
| 117 |
+
st.title("AI UI for Text Processing")
|
| 118 |
+
text_input = st.text_area("Paste your text here")
|
| 119 |
+
|
| 120 |
+
if st.button("Process Text"):
|
| 121 |
+
if text_input.strip() == "":
|
| 122 |
+
st.warning("Please paste some text.")
|
| 123 |
+
else:
|
| 124 |
+
file_name = None
|
| 125 |
+
if text_input.strip().startswith(("1.", "1 -", "1 _")) and "\n" in text_input:
|
| 126 |
+
file_name = save_list_as_excel(text_input)
|
| 127 |
+
save_text_as_file(text_input, "csv")
|
| 128 |
+
save_text_as_file(text_input, "md")
|
| 129 |
+
elif "." in text_input or "!" in text_input or "?" in text_input:
|
| 130 |
+
file_name = save_text_as_file(text_input, "txt")
|
| 131 |
+
save_text_as_file(text_input, "csv")
|
| 132 |
+
save_text_as_file(text_input, "md")
|
| 133 |
+
perform_nlp(text_input)
|
| 134 |
+
else:
|
| 135 |
+
file_name = save_text_as_file(text_input, "txt")
|
| 136 |
+
save_text_as_file(text_input, "csv")
|
| 137 |
+
save_text_as_file(text_input, "md")
|
| 138 |
+
|
| 139 |
+
if file_name:
|
| 140 |
+
try:
|
| 141 |
+
df = pd.read_excel(file_name)
|
| 142 |
+
st.subheader("Saved Data")
|
| 143 |
+
st.dataframe(df)
|
| 144 |
+
st.markdown(get_download_link(file_name), unsafe_allow_html=True)
|
| 145 |
+
st.markdown(get_download_link(file_name.replace(".xlsx", ".csv")), unsafe_allow_html=True)
|
| 146 |
+
st.markdown(get_download_link(file_name.replace(".xlsx", ".md")), unsafe_allow_html=True)
|
| 147 |
+
except:
|
| 148 |
+
pass
|
| 149 |
+
|
| 150 |
+
show_files_in_directory()
|
| 151 |
+
|
| 152 |
+
if __name__ == "__main__":
|
| 153 |
+
main()
|