Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import datetime
|
4 |
+
import io
|
5 |
+
import nltk
|
6 |
+
import base64
|
7 |
+
import os
|
8 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
9 |
+
from nltk.corpus import stopwords
|
10 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
11 |
+
from sklearn.decomposition import LatentDirichletAllocation
|
12 |
+
|
13 |
+
nltk.download('punkt')
|
14 |
+
nltk.download('stopwords')
|
15 |
+
|
16 |
+
def generate_file_name(text, file_type):
|
17 |
+
try:
|
18 |
+
# Tokenize the text into sentences
|
19 |
+
sentences = sent_tokenize(text)
|
20 |
+
|
21 |
+
# Tokenize the sentences into words and remove stopwords
|
22 |
+
words = [word.lower() for sentence in sentences for word in word_tokenize(sentence) if word.isalnum()]
|
23 |
+
stop_words = set(stopwords.words('english'))
|
24 |
+
filtered_words = [word for word in words if word not in stop_words]
|
25 |
+
|
26 |
+
# Count word frequencies
|
27 |
+
word_freq = nltk.FreqDist(filtered_words)
|
28 |
+
|
29 |
+
# Get the top 3 most frequent words
|
30 |
+
top_words = [word for word, _ in word_freq.most_common(3)]
|
31 |
+
|
32 |
+
# Generate the file name
|
33 |
+
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
34 |
+
file_name = f"{'-'.join(top_words)}_{current_time}.{file_type}"
|
35 |
+
return file_name
|
36 |
+
except:
|
37 |
+
# Fallback to default file naming if an error occurs
|
38 |
+
current_time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
39 |
+
file_name = f"text_file_{current_time}.{file_type}"
|
40 |
+
return file_name
|
41 |
+
|
42 |
+
def save_text_as_file(text, file_type):
|
43 |
+
file_name = generate_file_name(text, file_type)
|
44 |
+
with open(file_name, "w") as file:
|
45 |
+
file.write(text)
|
46 |
+
st.success(f"Text saved as {file_name}")
|
47 |
+
return file_name
|
48 |
+
|
49 |
+
def save_list_as_excel(text):
|
50 |
+
lines = text.split("\n")
|
51 |
+
data = []
|
52 |
+
for line in lines:
|
53 |
+
if line.strip():
|
54 |
+
parts = line.split(" - ", 1)
|
55 |
+
if len(parts) == 2:
|
56 |
+
data.append(parts)
|
57 |
+
else:
|
58 |
+
data.append([line.strip(), ""])
|
59 |
+
df = pd.DataFrame(data, columns=["Character", "Description"])
|
60 |
+
file_name = generate_file_name(text, "xlsx")
|
61 |
+
df.to_excel(file_name, index=False)
|
62 |
+
st.success(f"Character list saved as {file_name}")
|
63 |
+
return file_name
|
64 |
+
|
65 |
+
@st.cache_resource
|
66 |
+
def get_download_link(file_path):
|
67 |
+
try:
|
68 |
+
with open(file_path, 'rb') as file:
|
69 |
+
data = file.read()
|
70 |
+
b64 = base64.b64encode(data).decode()
|
71 |
+
file_name = os.path.basename(file_path)
|
72 |
+
ext = os.path.splitext(file_name)[1] # get the file extension
|
73 |
+
if ext == '.xlsx':
|
74 |
+
mime_type = 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet'
|
75 |
+
elif ext == '.csv':
|
76 |
+
mime_type = 'text/csv'
|
77 |
+
elif ext == '.md':
|
78 |
+
mime_type = 'text/markdown'
|
79 |
+
else:
|
80 |
+
mime_type = 'application/octet-stream' # general binary data type
|
81 |
+
href = f'<a href="data:{mime_type};base64,{b64}" download="{file_name}">{file_name}</a>'
|
82 |
+
return href
|
83 |
+
except:
|
84 |
+
return ''
|
85 |
+
|
86 |
+
def perform_nlp(text):
|
87 |
+
sentences = sent_tokenize(text)
|
88 |
+
# Topic Modeling
|
89 |
+
vectorizer = CountVectorizer(stop_words='english')
|
90 |
+
X = vectorizer.fit_transform(sentences)
|
91 |
+
lda = LatentDirichletAllocation(n_components=3, random_state=42)
|
92 |
+
lda.fit(X)
|
93 |
+
topics = lda.transform(X)
|
94 |
+
# Display topics
|
95 |
+
st.subheader("Topic Modeling")
|
96 |
+
for i, topic in enumerate(topics):
|
97 |
+
st.write(f"Topic {i+1}:")
|
98 |
+
topic_words = ", ".join([vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-6:-1]])
|
99 |
+
st.write(topic_words)
|
100 |
+
# Word Frequency
|
101 |
+
word_freq = pd.Series(" ".join(sentences).split()).value_counts()[:10]
|
102 |
+
st.subheader("Word Frequency")
|
103 |
+
st.bar_chart(word_freq)
|
104 |
+
|
105 |
+
def show_files_in_directory():
|
106 |
+
st.subheader("Files in Current Directory")
|
107 |
+
files = []
|
108 |
+
for file in os.listdir("."):
|
109 |
+
if file.endswith((".md", ".xlsx", ".csv")):
|
110 |
+
file_size = os.path.getsize(file)
|
111 |
+
file_modified_time = datetime.datetime.fromtimestamp(os.path.getmtime(file)).strftime("%Y-%m-%d %H:%M:%S")
|
112 |
+
files.append({"File Name": get_download_link(file), "Size (bytes)": file_size, "Last Modified": file_modified_time})
|
113 |
+
files_df = pd.DataFrame(files)
|
114 |
+
st.write(files_df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
115 |
+
|
116 |
+
def main():
|
117 |
+
st.title("AI UI for Text Processing")
|
118 |
+
text_input = st.text_area("Paste your text here")
|
119 |
+
|
120 |
+
if st.button("Process Text"):
|
121 |
+
if text_input.strip() == "":
|
122 |
+
st.warning("Please paste some text.")
|
123 |
+
else:
|
124 |
+
file_name = None
|
125 |
+
if text_input.strip().startswith(("1.", "1 -", "1 _")) and "\n" in text_input:
|
126 |
+
file_name = save_list_as_excel(text_input)
|
127 |
+
save_text_as_file(text_input, "csv")
|
128 |
+
save_text_as_file(text_input, "md")
|
129 |
+
elif "." in text_input or "!" in text_input or "?" in text_input:
|
130 |
+
file_name = save_text_as_file(text_input, "txt")
|
131 |
+
save_text_as_file(text_input, "csv")
|
132 |
+
save_text_as_file(text_input, "md")
|
133 |
+
perform_nlp(text_input)
|
134 |
+
else:
|
135 |
+
file_name = save_text_as_file(text_input, "txt")
|
136 |
+
save_text_as_file(text_input, "csv")
|
137 |
+
save_text_as_file(text_input, "md")
|
138 |
+
|
139 |
+
if file_name:
|
140 |
+
try:
|
141 |
+
df = pd.read_excel(file_name)
|
142 |
+
st.subheader("Saved Data")
|
143 |
+
st.dataframe(df)
|
144 |
+
st.markdown(get_download_link(file_name), unsafe_allow_html=True)
|
145 |
+
st.markdown(get_download_link(file_name.replace(".xlsx", ".csv")), unsafe_allow_html=True)
|
146 |
+
st.markdown(get_download_link(file_name.replace(".xlsx", ".md")), unsafe_allow_html=True)
|
147 |
+
except:
|
148 |
+
pass
|
149 |
+
|
150 |
+
show_files_in_directory()
|
151 |
+
|
152 |
+
if __name__ == "__main__":
|
153 |
+
main()
|