Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,8 @@ from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTok
|
|
5 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
6 |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
-
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
model.to(device)
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
max_length = 16
|
15 |
num_beams = 4
|
16 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
@@ -43,21 +39,21 @@ def predict(image,max_length=64, num_beams=4):
|
|
43 |
|
44 |
description= "NLP Image Understanding"
|
45 |
title = "NLP Image Understanding"
|
46 |
-
article = "nlpconnect
|
47 |
|
48 |
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
|
49 |
output = gr.outputs.Textbox(type="auto",label="Captions")
|
|
|
50 |
#examples = [['35-Favorite-Games.jpg']]
|
51 |
-
examples = [f"{i}.jpg" for i in range(1,
|
52 |
|
53 |
interface = gr.Interface(
|
54 |
fn=predict,
|
55 |
inputs = input,
|
56 |
-
theme="grass",
|
57 |
outputs=output,
|
58 |
examples = examples,
|
59 |
title=title,
|
60 |
description=description,
|
61 |
article = article,
|
62 |
)
|
63 |
-
interface.launch(
|
|
|
5 |
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
6 |
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
|
|
8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
model.to(device)
|
|
|
|
|
|
|
10 |
max_length = 16
|
11 |
num_beams = 4
|
12 |
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
|
|
39 |
|
40 |
description= "NLP Image Understanding"
|
41 |
title = "NLP Image Understanding"
|
42 |
+
article = "nlpconnect vit-gpt2-image-captioning"
|
43 |
|
44 |
input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)
|
45 |
output = gr.outputs.Textbox(type="auto",label="Captions")
|
46 |
+
|
47 |
#examples = [['35-Favorite-Games.jpg']]
|
48 |
+
examples = [f"{i}.jpg" for i in range(1,10)]
|
49 |
|
50 |
interface = gr.Interface(
|
51 |
fn=predict,
|
52 |
inputs = input,
|
|
|
53 |
outputs=output,
|
54 |
examples = examples,
|
55 |
title=title,
|
56 |
description=description,
|
57 |
article = article,
|
58 |
)
|
59 |
+
interface.launch()
|