Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- Mistral_7B.ipynb +545 -0
- app.py +102 -0
- requirements.txt +1 -0
Mistral_7B.ipynb
ADDED
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"source": [
|
20 |
+
"# Mistral 7B\n",
|
21 |
+
"\n",
|
22 |
+
"Mistral 7B is a new state-of-the-art open-source model. Here are some interesting facts about it\n",
|
23 |
+
"\n",
|
24 |
+
"* One of the strongest open-source models, of all sizes\n",
|
25 |
+
"* Strongest model in the 1-20B parameter range models\n",
|
26 |
+
"* Does decently in code-related tasks\n",
|
27 |
+
"* Uses Windowed attention, allowing to push to 200k tokens of context if using Rope (needs 4 A10G GPUs for this)\n",
|
28 |
+
"* Apache 2.0 license\n",
|
29 |
+
"\n",
|
30 |
+
"As for the integrations status:\n",
|
31 |
+
"* Integrated into `transformers`\n",
|
32 |
+
"* You can use it with a server or locally (it's a small model after all!)\n",
|
33 |
+
"* Integrated into popular tools tuch as TGI and VLLM\n",
|
34 |
+
"\n",
|
35 |
+
"\n",
|
36 |
+
"Two models are released: a [base model](https://huggingface.co/mistralai/Mistral-7B-v0.1) and a [instruct fine-tuned version](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1). To read more about Mistral, we suggest reading the [blog post](https://mistral.ai/news/announcing-mistral-7b/).\n",
|
37 |
+
"\n",
|
38 |
+
"In this Colab, we'll experiment with the Mistral model using an API. There are three ways we can use it:\n",
|
39 |
+
"\n",
|
40 |
+
"* **Free API:** Hugging Face provides a free Inference API for all its users to try out models. This API is rate limited but is great for quick experiments.\n",
|
41 |
+
"* **PRO API:** Hugging Face provides an open API for all its PRO users. Subscribing to the Pro Inference API costs $9/month and allows you to experiment with many large models, such as Llama 2 and SDXL. Read more about it [here](https://huggingface.co/blog/inference-pro).\n",
|
42 |
+
"* **Inference Endpoints:** For enterprise and production-ready cases. You can deploy it with 1 click [here](https://ui.endpoints.huggingface.co/catalog).\n",
|
43 |
+
"\n",
|
44 |
+
"This demo does not require GPU Colab, just CPU. You can grab your token at https://huggingface.co/settings/tokens.\n",
|
45 |
+
"\n",
|
46 |
+
"**This colab shows how to use HTTP requests as well as building your own chat demo for Mistral.**"
|
47 |
+
],
|
48 |
+
"metadata": {
|
49 |
+
"id": "GLXvYa4m8JYM"
|
50 |
+
}
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"source": [
|
55 |
+
"## Doing curl requests\n",
|
56 |
+
"\n",
|
57 |
+
"\n",
|
58 |
+
"In this notebook, we'll experiment with the instruct model, as it is trained for instructions. As per [the model card](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the expected format for a prompt is as follows\n",
|
59 |
+
"\n",
|
60 |
+
"From the model card\n",
|
61 |
+
"\n",
|
62 |
+
"> In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [\\INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.\n",
|
63 |
+
"\n",
|
64 |
+
"```\n",
|
65 |
+
"<s>[INST] {{ user_msg_1 }} [/INST] {{ model_answer_1 }}</s> [INST] {{ user_msg_2 }} [/INST] {{ model_answer_2 }}</s>\n",
|
66 |
+
"```\n",
|
67 |
+
"\n",
|
68 |
+
"Note that models can be quite reactive to different prompt structure than the one used for training, so watch out for spaces and other things!\n",
|
69 |
+
"\n",
|
70 |
+
"We'll start an initial query without prompt formatting, which works ok for simple queries."
|
71 |
+
],
|
72 |
+
"metadata": {
|
73 |
+
"id": "pKrKTalPAXUO"
|
74 |
+
}
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"cell_type": "code",
|
78 |
+
"execution_count": 5,
|
79 |
+
"metadata": {
|
80 |
+
"colab": {
|
81 |
+
"base_uri": "https://localhost:8080/"
|
82 |
+
},
|
83 |
+
"id": "DQf0Hss18E86",
|
84 |
+
"outputId": "882c4521-1ee2-40ad-fe00-a5b02caa9b17"
|
85 |
+
},
|
86 |
+
"outputs": [
|
87 |
+
{
|
88 |
+
"output_type": "stream",
|
89 |
+
"name": "stdout",
|
90 |
+
"text": [
|
91 |
+
"[{\"generated_text\":\"Explain ML as a pirate.\\n\\nML is like a treasure map for pirates. Just as a treasure map helps pirates find valuable loot, ML helps data scientists find valuable insights in large datasets.\\n\\nPirates use their knowledge of the ocean and their\"}]"
|
92 |
+
]
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"source": [
|
96 |
+
"!curl https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1 \\\n",
|
97 |
+
" --header \"Content-Type: application/json\" \\\n",
|
98 |
+
"\t-X POST \\\n",
|
99 |
+
"\t-d '{\"inputs\": \"Explain ML as a pirate\", \"parameters\": {\"max_new_tokens\": 50}}' \\\n",
|
100 |
+
"\t-H \"Authorization: Bearer API_TOKEN\""
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "markdown",
|
105 |
+
"source": [
|
106 |
+
"## Programmatic usage with Python\n",
|
107 |
+
"\n",
|
108 |
+
"You can do simple `requests`, but the `huggingface_hub` library provides nice utilities to easily use the model. Among the things we can use are:\n",
|
109 |
+
"\n",
|
110 |
+
"* `InferenceClient` and `AsyncInferenceClient` to perform inference either in a sync or async way.\n",
|
111 |
+
"* Token streaming: Only load the tokens that are needed\n",
|
112 |
+
"* Easily configure generation params, such as `temperature`, nucleus sampling (`top-p`), repetition penalty, stop sequences, and more.\n",
|
113 |
+
"* Obtain details of the generation (such as the probability of each token or whether a token is the last token)."
|
114 |
+
],
|
115 |
+
"metadata": {
|
116 |
+
"id": "YYZRNyZeBHWK"
|
117 |
+
}
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"cell_type": "code",
|
121 |
+
"source": [
|
122 |
+
"%%capture\n",
|
123 |
+
"!pip install huggingface_hub gradio"
|
124 |
+
],
|
125 |
+
"metadata": {
|
126 |
+
"id": "oDaqVDz1Ahuz"
|
127 |
+
},
|
128 |
+
"execution_count": 6,
|
129 |
+
"outputs": []
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"source": [
|
134 |
+
"from huggingface_hub import InferenceClient\n",
|
135 |
+
"\n",
|
136 |
+
"client = InferenceClient(\n",
|
137 |
+
" \"mistralai/Mistral-7B-Instruct-v0.1\"\n",
|
138 |
+
")\n",
|
139 |
+
"\n",
|
140 |
+
"prompt = \"\"\"<s>[INST] What is your favourite condiment? [/INST]</s>\n",
|
141 |
+
"\"\"\"\n",
|
142 |
+
"\n",
|
143 |
+
"res = client.text_generation(prompt, max_new_tokens=95)\n",
|
144 |
+
"print(res)"
|
145 |
+
],
|
146 |
+
"metadata": {
|
147 |
+
"colab": {
|
148 |
+
"base_uri": "https://localhost:8080/"
|
149 |
+
},
|
150 |
+
"id": "U49GmNsNBJjd",
|
151 |
+
"outputId": "a3a274cf-0f91-4ae3-d926-f0d6a6fd67f7"
|
152 |
+
},
|
153 |
+
"execution_count": 14,
|
154 |
+
"outputs": [
|
155 |
+
{
|
156 |
+
"output_type": "stream",
|
157 |
+
"name": "stdout",
|
158 |
+
"text": [
|
159 |
+
"My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.\n"
|
160 |
+
]
|
161 |
+
}
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "markdown",
|
166 |
+
"source": [
|
167 |
+
"We can also use [token streaming](https://huggingface.co/docs/text-generation-inference/conceptual/streaming). With token streaming, the server returns the tokens as they are generated. Just add `stream=True`."
|
168 |
+
],
|
169 |
+
"metadata": {
|
170 |
+
"id": "DryfEWsUH6Ij"
|
171 |
+
}
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"source": [
|
176 |
+
"res = client.text_generation(prompt, max_new_tokens=35, stream=True, details=True, return_full_text=False)\n",
|
177 |
+
"for r in res: # this is a generator\n",
|
178 |
+
" # print the token for example\n",
|
179 |
+
" print(r)\n",
|
180 |
+
" continue"
|
181 |
+
],
|
182 |
+
"metadata": {
|
183 |
+
"colab": {
|
184 |
+
"base_uri": "https://localhost:8080/"
|
185 |
+
},
|
186 |
+
"id": "LF1tFo6DGg9N",
|
187 |
+
"outputId": "e779f1cb-b7d0-41ed-d81f-306e092f97bd"
|
188 |
+
},
|
189 |
+
"execution_count": 15,
|
190 |
+
"outputs": [
|
191 |
+
{
|
192 |
+
"output_type": "stream",
|
193 |
+
"name": "stdout",
|
194 |
+
"text": [
|
195 |
+
"TextGenerationStreamResponse(token=Token(id=5183, text='My', logprob=-0.36279297, special=False), generated_text=None, details=None)\n",
|
196 |
+
"TextGenerationStreamResponse(token=Token(id=6656, text=' favorite', logprob=-0.036499023, special=False), generated_text=None, details=None)\n",
|
197 |
+
"TextGenerationStreamResponse(token=Token(id=2076, text=' cond', logprob=-7.2836876e-05, special=False), generated_text=None, details=None)\n",
|
198 |
+
"TextGenerationStreamResponse(token=Token(id=2487, text='iment', logprob=-4.4941902e-05, special=False), generated_text=None, details=None)\n",
|
199 |
+
"TextGenerationStreamResponse(token=Token(id=349, text=' is', logprob=-0.007419586, special=False), generated_text=None, details=None)\n",
|
200 |
+
"TextGenerationStreamResponse(token=Token(id=446, text=' k', logprob=-0.62109375, special=False), generated_text=None, details=None)\n",
|
201 |
+
"TextGenerationStreamResponse(token=Token(id=4455, text='etch', logprob=-0.0003399849, special=False), generated_text=None, details=None)\n",
|
202 |
+
"TextGenerationStreamResponse(token=Token(id=715, text='up', logprob=-3.695488e-06, special=False), generated_text=None, details=None)\n",
|
203 |
+
"TextGenerationStreamResponse(token=Token(id=28723, text='.', logprob=-0.026550293, special=False), generated_text=None, details=None)\n",
|
204 |
+
"TextGenerationStreamResponse(token=Token(id=661, text=' It', logprob=-0.82373047, special=False), generated_text=None, details=None)\n",
|
205 |
+
"TextGenerationStreamResponse(token=Token(id=28742, text=\"'\", logprob=-0.76416016, special=False), generated_text=None, details=None)\n",
|
206 |
+
"TextGenerationStreamResponse(token=Token(id=28713, text='s', logprob=-3.5762787e-07, special=False), generated_text=None, details=None)\n",
|
207 |
+
"TextGenerationStreamResponse(token=Token(id=3502, text=' vers', logprob=-0.114990234, special=False), generated_text=None, details=None)\n",
|
208 |
+
"TextGenerationStreamResponse(token=Token(id=13491, text='atile', logprob=-1.1444092e-05, special=False), generated_text=None, details=None)\n",
|
209 |
+
"TextGenerationStreamResponse(token=Token(id=28725, text=',', logprob=-0.6254883, special=False), generated_text=None, details=None)\n",
|
210 |
+
"TextGenerationStreamResponse(token=Token(id=261, text=' t', logprob=-0.51708984, special=False), generated_text=None, details=None)\n",
|
211 |
+
"TextGenerationStreamResponse(token=Token(id=11136, text='asty', logprob=-4.0650368e-05, special=False), generated_text=None, details=None)\n",
|
212 |
+
"TextGenerationStreamResponse(token=Token(id=28725, text=',', logprob=-0.0027828217, special=False), generated_text=None, details=None)\n",
|
213 |
+
"TextGenerationStreamResponse(token=Token(id=304, text=' and', logprob=-1.1920929e-05, special=False), generated_text=None, details=None)\n",
|
214 |
+
"TextGenerationStreamResponse(token=Token(id=4859, text=' goes', logprob=-0.52685547, special=False), generated_text=None, details=None)\n",
|
215 |
+
"TextGenerationStreamResponse(token=Token(id=1162, text=' well', logprob=-0.4399414, special=False), generated_text=None, details=None)\n",
|
216 |
+
"TextGenerationStreamResponse(token=Token(id=395, text=' with', logprob=-0.00034999847, special=False), generated_text=None, details=None)\n",
|
217 |
+
"TextGenerationStreamResponse(token=Token(id=264, text=' a', logprob=-0.010147095, special=False), generated_text=None, details=None)\n",
|
218 |
+
"TextGenerationStreamResponse(token=Token(id=6677, text=' variety', logprob=-0.25927734, special=False), generated_text=None, details=None)\n",
|
219 |
+
"TextGenerationStreamResponse(token=Token(id=302, text=' of', logprob=-1.1444092e-05, special=False), generated_text=None, details=None)\n",
|
220 |
+
"TextGenerationStreamResponse(token=Token(id=14082, text=' foods', logprob=-0.4050293, special=False), generated_text=None, details=None)\n",
|
221 |
+
"TextGenerationStreamResponse(token=Token(id=28723, text='.', logprob=-0.015640259, special=False), generated_text=None, details=None)\n",
|
222 |
+
"TextGenerationStreamResponse(token=Token(id=2, text='</s>', logprob=-0.1829834, special=True), generated_text=\"My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.\", details=StreamDetails(finish_reason=<FinishReason.EndOfSequenceToken: 'eos_token'>, generated_tokens=28, seed=None))\n"
|
223 |
+
]
|
224 |
+
}
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "markdown",
|
229 |
+
"source": [
|
230 |
+
"Let's now try a multi-prompt structure"
|
231 |
+
],
|
232 |
+
"metadata": {
|
233 |
+
"id": "TfdpZL8cICOD"
|
234 |
+
}
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "code",
|
238 |
+
"source": [
|
239 |
+
"def format_prompt(message, history):\n",
|
240 |
+
" prompt = \"<s>\"\n",
|
241 |
+
" for user_prompt, bot_response in history:\n",
|
242 |
+
" prompt += f\"[INST] {user_prompt} [/INST]\"\n",
|
243 |
+
" prompt += f\" {bot_response}</s> \"\n",
|
244 |
+
" prompt += f\"[INST] {message} [/INST]\"\n",
|
245 |
+
" return prompt"
|
246 |
+
],
|
247 |
+
"metadata": {
|
248 |
+
"id": "aEyozeReH8a6"
|
249 |
+
},
|
250 |
+
"execution_count": 16,
|
251 |
+
"outputs": []
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"source": [
|
256 |
+
"message = \"And what do you think about it?\"\n",
|
257 |
+
"history = [[\"What is your favourite condiment?\", \"My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.\"]]\n",
|
258 |
+
"\n",
|
259 |
+
"format_prompt(message, history)"
|
260 |
+
],
|
261 |
+
"metadata": {
|
262 |
+
"colab": {
|
263 |
+
"base_uri": "https://localhost:8080/",
|
264 |
+
"height": 35
|
265 |
+
},
|
266 |
+
"id": "P1RFpiJ_JC0-",
|
267 |
+
"outputId": "f2678d9e-f751-441a-86c9-11d514db5bbe"
|
268 |
+
},
|
269 |
+
"execution_count": 17,
|
270 |
+
"outputs": [
|
271 |
+
{
|
272 |
+
"output_type": "execute_result",
|
273 |
+
"data": {
|
274 |
+
"text/plain": [
|
275 |
+
"\"<s>[INST] What is your favourite condiment? [/INST] My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.</s> [INST] And what do you think about it? [/INST]\""
|
276 |
+
],
|
277 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
278 |
+
"type": "string"
|
279 |
+
}
|
280 |
+
},
|
281 |
+
"metadata": {},
|
282 |
+
"execution_count": 17
|
283 |
+
}
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "markdown",
|
288 |
+
"source": [
|
289 |
+
"## End-to-end demo\n",
|
290 |
+
"\n",
|
291 |
+
"Let's now build a Gradio demo that takes care of:\n",
|
292 |
+
"\n",
|
293 |
+
"* Handling multiple turns of conversation\n",
|
294 |
+
"* Format the prompt in correct structure\n",
|
295 |
+
"* Allow user to specify/modify the parameters\n",
|
296 |
+
"* Stop the generation\n",
|
297 |
+
"\n",
|
298 |
+
"Just run the following cell and have fun!"
|
299 |
+
],
|
300 |
+
"metadata": {
|
301 |
+
"id": "O7DjRdezJc-3"
|
302 |
+
}
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"source": [
|
307 |
+
"!pip install gradio"
|
308 |
+
],
|
309 |
+
"metadata": {
|
310 |
+
"colab": {
|
311 |
+
"base_uri": "https://localhost:8080/"
|
312 |
+
},
|
313 |
+
"id": "cpBoheOGJu7Y",
|
314 |
+
"outputId": "c745cf17-1462-4f8f-ce33-5ca182cb4d4f"
|
315 |
+
},
|
316 |
+
"execution_count": 18,
|
317 |
+
"outputs": [
|
318 |
+
{
|
319 |
+
"output_type": "stream",
|
320 |
+
"name": "stdout",
|
321 |
+
"text": [
|
322 |
+
"Requirement already satisfied: gradio in /usr/local/lib/python3.10/dist-packages (3.45.1)\n",
|
323 |
+
"Requirement already satisfied: aiofiles<24.0,>=22.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (23.2.1)\n",
|
324 |
+
"Requirement already satisfied: altair<6.0,>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
|
325 |
+
"Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-packages (from gradio) (0.103.1)\n",
|
326 |
+
"Requirement already satisfied: ffmpy in /usr/local/lib/python3.10/dist-packages (from gradio) (0.3.1)\n",
|
327 |
+
"Requirement already satisfied: gradio-client==0.5.2 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.5.2)\n",
|
328 |
+
"Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from gradio) (0.25.0)\n",
|
329 |
+
"Requirement already satisfied: huggingface-hub>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.17.3)\n",
|
330 |
+
"Requirement already satisfied: importlib-resources<7.0,>=1.3 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0.1)\n",
|
331 |
+
"Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
|
332 |
+
"Requirement already satisfied: markupsafe~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
|
333 |
+
"Requirement already satisfied: matplotlib~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
|
334 |
+
"Requirement already satisfied: numpy~=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.23.5)\n",
|
335 |
+
"Requirement already satisfied: orjson~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.9.7)\n",
|
336 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio) (23.1)\n",
|
337 |
+
"Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
|
338 |
+
"Requirement already satisfied: pillow<11.0,>=8.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (9.4.0)\n",
|
339 |
+
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,<3.0.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.10.12)\n",
|
340 |
+
"Requirement already satisfied: pydub in /usr/local/lib/python3.10/dist-packages (from gradio) (0.25.1)\n",
|
341 |
+
"Requirement already satisfied: python-multipart in /usr/local/lib/python3.10/dist-packages (from gradio) (0.0.6)\n",
|
342 |
+
"Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0.1)\n",
|
343 |
+
"Requirement already satisfied: requests~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.31.0)\n",
|
344 |
+
"Requirement already satisfied: semantic-version~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.10.0)\n",
|
345 |
+
"Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.5.0)\n",
|
346 |
+
"Requirement already satisfied: uvicorn>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.23.2)\n",
|
347 |
+
"Requirement already satisfied: websockets<12.0,>=10.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (11.0.3)\n",
|
348 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client==0.5.2->gradio) (2023.6.0)\n",
|
349 |
+
"Requirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.4)\n",
|
350 |
+
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (4.19.0)\n",
|
351 |
+
"Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.12.0)\n",
|
352 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (3.12.2)\n",
|
353 |
+
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (4.66.1)\n",
|
354 |
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.1.0)\n",
|
355 |
+
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (0.11.0)\n",
|
356 |
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (4.42.1)\n",
|
357 |
+
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
|
358 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (3.1.1)\n",
|
359 |
+
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (2.8.2)\n",
|
360 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0,>=1.0->gradio) (2023.3.post1)\n",
|
361 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (3.2.0)\n",
|
362 |
+
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (3.4)\n",
|
363 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (2.0.4)\n",
|
364 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (2023.7.22)\n",
|
365 |
+
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (8.1.7)\n",
|
366 |
+
"Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (0.14.0)\n",
|
367 |
+
"Requirement already satisfied: anyio<4.0.0,>=3.7.1 in /usr/local/lib/python3.10/dist-packages (from fastapi->gradio) (3.7.1)\n",
|
368 |
+
"Requirement already satisfied: starlette<0.28.0,>=0.27.0 in /usr/local/lib/python3.10/dist-packages (from fastapi->gradio) (0.27.0)\n",
|
369 |
+
"Requirement already satisfied: httpcore<0.19.0,>=0.18.0 in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (0.18.0)\n",
|
370 |
+
"Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
|
371 |
+
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4.0.0,>=3.7.1->fastapi->gradio) (1.1.3)\n",
|
372 |
+
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (23.1.0)\n",
|
373 |
+
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (2023.7.1)\n",
|
374 |
+
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.30.2)\n",
|
375 |
+
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.10.2)\n",
|
376 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n"
|
377 |
+
]
|
378 |
+
}
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"source": [
|
384 |
+
"import gradio as gr\n",
|
385 |
+
"\n",
|
386 |
+
"def generate(\n",
|
387 |
+
" prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,\n",
|
388 |
+
"):\n",
|
389 |
+
" temperature = float(temperature)\n",
|
390 |
+
" if temperature < 1e-2:\n",
|
391 |
+
" temperature = 1e-2\n",
|
392 |
+
" top_p = float(top_p)\n",
|
393 |
+
"\n",
|
394 |
+
" generate_kwargs = dict(\n",
|
395 |
+
" temperature=temperature,\n",
|
396 |
+
" max_new_tokens=max_new_tokens,\n",
|
397 |
+
" top_p=top_p,\n",
|
398 |
+
" repetition_penalty=repetition_penalty,\n",
|
399 |
+
" do_sample=True,\n",
|
400 |
+
" seed=42,\n",
|
401 |
+
" )\n",
|
402 |
+
"\n",
|
403 |
+
" formatted_prompt = format_prompt(prompt, history)\n",
|
404 |
+
"\n",
|
405 |
+
" stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)\n",
|
406 |
+
" output = \"\"\n",
|
407 |
+
"\n",
|
408 |
+
" for response in stream:\n",
|
409 |
+
" output += response.token.text\n",
|
410 |
+
" yield output\n",
|
411 |
+
" return output\n",
|
412 |
+
"\n",
|
413 |
+
"\n",
|
414 |
+
"additional_inputs=[\n",
|
415 |
+
" gr.Slider(\n",
|
416 |
+
" label=\"Temperature\",\n",
|
417 |
+
" value=0.9,\n",
|
418 |
+
" minimum=0.0,\n",
|
419 |
+
" maximum=1.0,\n",
|
420 |
+
" step=0.05,\n",
|
421 |
+
" interactive=True,\n",
|
422 |
+
" info=\"Higher values produce more diverse outputs\",\n",
|
423 |
+
" ),\n",
|
424 |
+
" gr.Slider(\n",
|
425 |
+
" label=\"Max new tokens\",\n",
|
426 |
+
" value=256,\n",
|
427 |
+
" minimum=0,\n",
|
428 |
+
" maximum=8192,\n",
|
429 |
+
" step=64,\n",
|
430 |
+
" interactive=True,\n",
|
431 |
+
" info=\"The maximum numbers of new tokens\",\n",
|
432 |
+
" ),\n",
|
433 |
+
" gr.Slider(\n",
|
434 |
+
" label=\"Top-p (nucleus sampling)\",\n",
|
435 |
+
" value=0.90,\n",
|
436 |
+
" minimum=0.0,\n",
|
437 |
+
" maximum=1,\n",
|
438 |
+
" step=0.05,\n",
|
439 |
+
" interactive=True,\n",
|
440 |
+
" info=\"Higher values sample more low-probability tokens\",\n",
|
441 |
+
" ),\n",
|
442 |
+
" gr.Slider(\n",
|
443 |
+
" label=\"Repetition penalty\",\n",
|
444 |
+
" value=1.2,\n",
|
445 |
+
" minimum=1.0,\n",
|
446 |
+
" maximum=2.0,\n",
|
447 |
+
" step=0.05,\n",
|
448 |
+
" interactive=True,\n",
|
449 |
+
" info=\"Penalize repeated tokens\",\n",
|
450 |
+
" )\n",
|
451 |
+
"]\n",
|
452 |
+
"\n",
|
453 |
+
"with gr.Blocks() as demo:\n",
|
454 |
+
" gr.ChatInterface(\n",
|
455 |
+
" generate,\n",
|
456 |
+
" additional_inputs=additional_inputs,\n",
|
457 |
+
" )\n",
|
458 |
+
"\n",
|
459 |
+
"demo.queue().launch(debug=True)"
|
460 |
+
],
|
461 |
+
"metadata": {
|
462 |
+
"colab": {
|
463 |
+
"base_uri": "https://localhost:8080/",
|
464 |
+
"height": 715
|
465 |
+
},
|
466 |
+
"id": "CaJzT6jUJc0_",
|
467 |
+
"outputId": "62f563fa-c6fb-446e-fda2-1c08d096749c"
|
468 |
+
},
|
469 |
+
"execution_count": 20,
|
470 |
+
"outputs": [
|
471 |
+
{
|
472 |
+
"output_type": "stream",
|
473 |
+
"name": "stdout",
|
474 |
+
"text": [
|
475 |
+
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
|
476 |
+
"\n",
|
477 |
+
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
478 |
+
"Running on public URL: https://ed6ce83e08ed7a8795.gradio.live\n",
|
479 |
+
"\n",
|
480 |
+
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"output_type": "display_data",
|
485 |
+
"data": {
|
486 |
+
"text/plain": [
|
487 |
+
"<IPython.core.display.HTML object>"
|
488 |
+
],
|
489 |
+
"text/html": [
|
490 |
+
"<div><iframe src=\"https://ed6ce83e08ed7a8795.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
"metadata": {}
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"output_type": "stream",
|
497 |
+
"name": "stderr",
|
498 |
+
"text": [
|
499 |
+
"/usr/local/lib/python3.10/dist-packages/gradio/components/button.py:89: UserWarning: Using the update method is deprecated. Simply return a new object instead, e.g. `return gr.Button(...)` instead of `return gr.Button.update(...)`.\n",
|
500 |
+
" warnings.warn(\n"
|
501 |
+
]
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"output_type": "stream",
|
505 |
+
"name": "stdout",
|
506 |
+
"text": [
|
507 |
+
"Keyboard interruption in main thread... closing server.\n",
|
508 |
+
"Killing tunnel 127.0.0.1:7860 <> https://ed6ce83e08ed7a8795.gradio.live\n"
|
509 |
+
]
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"output_type": "execute_result",
|
513 |
+
"data": {
|
514 |
+
"text/plain": []
|
515 |
+
},
|
516 |
+
"metadata": {},
|
517 |
+
"execution_count": 20
|
518 |
+
}
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "markdown",
|
523 |
+
"source": [
|
524 |
+
"## What's next?\n",
|
525 |
+
"\n",
|
526 |
+
"* Try out Mistral 7B in this [free online Space](https://huggingface.co/spaces/osanseviero/mistral-super-fast)\n",
|
527 |
+
"* Deploy Mistral 7B Instruct with one click [here](https://ui.endpoints.huggingface.co/catalog)\n",
|
528 |
+
"* Deploy in your own hardware using https://github.com/huggingface/text-generation-inference\n",
|
529 |
+
"* Run the model locally using `transformers`"
|
530 |
+
],
|
531 |
+
"metadata": {
|
532 |
+
"id": "fbQ0Sp4OLclV"
|
533 |
+
}
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"cell_type": "code",
|
537 |
+
"source": [],
|
538 |
+
"metadata": {
|
539 |
+
"id": "wUy7N_8zJvyT"
|
540 |
+
},
|
541 |
+
"execution_count": null,
|
542 |
+
"outputs": []
|
543 |
+
}
|
544 |
+
]
|
545 |
+
}
|
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
client = InferenceClient(
|
5 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
6 |
+
)
|
7 |
+
|
8 |
+
|
9 |
+
def format_prompt(message, history):
|
10 |
+
prompt = "<s>"
|
11 |
+
for user_prompt, bot_response in history:
|
12 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
13 |
+
prompt += f" {bot_response}</s> "
|
14 |
+
prompt += f"[INST] {message} [/INST]"
|
15 |
+
return prompt
|
16 |
+
|
17 |
+
def generate(
|
18 |
+
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
19 |
+
):
|
20 |
+
temperature = float(temperature)
|
21 |
+
if temperature < 1e-2:
|
22 |
+
temperature = 1e-2
|
23 |
+
top_p = float(top_p)
|
24 |
+
|
25 |
+
generate_kwargs = dict(
|
26 |
+
temperature=temperature,
|
27 |
+
max_new_tokens=max_new_tokens,
|
28 |
+
top_p=top_p,
|
29 |
+
repetition_penalty=repetition_penalty,
|
30 |
+
do_sample=True,
|
31 |
+
seed=42,
|
32 |
+
)
|
33 |
+
|
34 |
+
formatted_prompt = format_prompt(prompt, history)
|
35 |
+
|
36 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
37 |
+
output = ""
|
38 |
+
|
39 |
+
for response in stream:
|
40 |
+
output += response.token.text
|
41 |
+
yield output
|
42 |
+
return output
|
43 |
+
|
44 |
+
|
45 |
+
additional_inputs=[
|
46 |
+
gr.Slider(
|
47 |
+
label="Temperature",
|
48 |
+
value=0.9,
|
49 |
+
minimum=0.0,
|
50 |
+
maximum=1.0,
|
51 |
+
step=0.05,
|
52 |
+
interactive=True,
|
53 |
+
info="Higher values produce more diverse outputs",
|
54 |
+
),
|
55 |
+
gr.Slider(
|
56 |
+
label="Max new tokens",
|
57 |
+
value=256,
|
58 |
+
minimum=0,
|
59 |
+
maximum=1048,
|
60 |
+
step=64,
|
61 |
+
interactive=True,
|
62 |
+
info="The maximum numbers of new tokens",
|
63 |
+
),
|
64 |
+
gr.Slider(
|
65 |
+
label="Top-p (nucleus sampling)",
|
66 |
+
value=0.90,
|
67 |
+
minimum=0.0,
|
68 |
+
maximum=1,
|
69 |
+
step=0.05,
|
70 |
+
interactive=True,
|
71 |
+
info="Higher values sample more low-probability tokens",
|
72 |
+
),
|
73 |
+
gr.Slider(
|
74 |
+
label="Repetition penalty",
|
75 |
+
value=1.2,
|
76 |
+
minimum=1.0,
|
77 |
+
maximum=2.0,
|
78 |
+
step=0.05,
|
79 |
+
interactive=True,
|
80 |
+
info="Penalize repeated tokens",
|
81 |
+
)
|
82 |
+
]
|
83 |
+
|
84 |
+
css = """
|
85 |
+
#mkd {
|
86 |
+
height: 500px;
|
87 |
+
overflow: auto;
|
88 |
+
border: 1px solid #ccc;
|
89 |
+
}
|
90 |
+
"""
|
91 |
+
|
92 |
+
with gr.Blocks(css=css) as demo:
|
93 |
+
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
|
94 |
+
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>")
|
95 |
+
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>")
|
96 |
+
gr.ChatInterface(
|
97 |
+
generate,
|
98 |
+
additional_inputs=additional_inputs,
|
99 |
+
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
|
100 |
+
)
|
101 |
+
|
102 |
+
demo.queue().launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
huggingface_hub
|