Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.1" | |
) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
additional_inputs=[ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
css = """ | |
#mkd { | |
height: 200px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.ChatInterface( | |
generate, | |
additional_inputs=additional_inputs, | |
examples=[ | |
["Create a ten-point markdown outline with emojis about: Decreased Ξ±-ketoglutarate dehydrogenase activity in astrocytes"], | |
["Create a ten-point markdown outline with emojis about: Lewy body dementia"], | |
["Create a ten-point markdown outline with emojis about: Delusional disorder"], | |
["Create a ten-point markdown outline with emojis about: Galantamine"], | |
["Create a ten-point markdown outline with emojis about: Neural crest"], | |
["Create a ten-point markdown outline with emojis about: Progressive multifocal encephalopathy (PML)"], | |
["Create a ten-point markdown outline with emojis about: CT head"], | |
["Create a ten-point markdown outline with emojis about: Ξ²-Galactocerebrosidase"], | |
["Create a ten-point markdown outline with emojis about: Dopamine"], | |
["Create a ten-point markdown outline with emojis about: G protein-coupled receptors"], | |
["Create a ten-point markdown outline with emojis about: CT scan of the head without contrast"], | |
["Create a ten-point markdown outline with emojis about: Pyogenic brain abscess"], | |
["Create a ten-point markdown outline with emojis about: Pneumocystitis jiroveci"] | |
] | |
) | |
gr.HTML("""<h2>π€ Mistral Chat - Gradio π€</h2> | |
In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬ | |
Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π | |
<h2>π Model Features π </h2> | |
<ul> | |
<li>πͺ Sliding Window Attention with 128K tokens span</li> | |
<li>π GQA for faster inference</li> | |
<li>π Byte-fallback BPE tokenizer</li> | |
</ul> | |
<h3>π License π Released under Apache 2.0 License</h3> | |
<h3>π¦ Usage π¦</h3> | |
<ul> | |
<li>π Available on Huggingface Hub</li> | |
<li>π Python code snippets for easy setup</li> | |
<li>π Expected speedups with Flash Attention 2</li> | |
</ul> | |
""") | |
demo.queue().launch(debug=True) |