Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -34,8 +34,8 @@ from xml.etree import ElementTree as ET
|
|
34 |
import streamlit.components.v1 as components # Import Streamlit Components for HTML5
|
35 |
|
36 |
|
37 |
-
st.set_page_config(page_title="🐪Llama
|
38 |
-
|
39 |
|
40 |
def add_Med_Licensing_Exam_Dataset():
|
41 |
import streamlit as st
|
@@ -92,9 +92,9 @@ def add_Med_Licensing_Exam_Dataset():
|
|
92 |
# 1. Constants and Top Level UI Variables
|
93 |
|
94 |
# My Inference API Copy
|
95 |
-
|
96 |
# Original:
|
97 |
-
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
98 |
API_KEY = os.getenv('API_KEY')
|
99 |
MODEL1="meta-llama/Llama-2-7b-chat-hf"
|
100 |
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
|
@@ -104,7 +104,7 @@ headers = {
|
|
104 |
"Content-Type": "application/json"
|
105 |
}
|
106 |
key = os.getenv('OPENAI_API_KEY')
|
107 |
-
prompt = f"Write instructions to teach
|
108 |
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
109 |
|
110 |
# 2. Prompt label button demo for LLM
|
@@ -128,30 +128,30 @@ def add_witty_humor_buttons():
|
|
128 |
col1, col2, col3 = st.columns([1, 1, 1], gap="small")
|
129 |
|
130 |
# Add buttons to columns
|
131 |
-
if col1.button("
|
132 |
StreamLLMChatResponse(descriptions["Generate Limericks 😂"])
|
133 |
|
134 |
if col2.button("Wise Quotes 🧙"):
|
135 |
StreamLLMChatResponse(descriptions["Wise Quotes 🧙"])
|
136 |
|
137 |
-
|
138 |
-
|
139 |
|
140 |
col4, col5, col6 = st.columns([1, 1, 1], gap="small")
|
141 |
|
142 |
-
if col4.button("
|
143 |
-
StreamLLMChatResponse(descriptions["
|
144 |
|
145 |
if col5.button("Minnesota Humor ❄️"):
|
146 |
StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"])
|
147 |
|
148 |
-
if col6.button("
|
149 |
-
StreamLLMChatResponse(descriptions["
|
150 |
|
151 |
col7 = st.columns(1, gap="small")
|
152 |
|
153 |
-
if col7[0].button("
|
154 |
-
StreamLLMChatResponse(descriptions["
|
155 |
|
156 |
def SpeechSynthesis(result):
|
157 |
documentHTML5='''
|
@@ -180,7 +180,7 @@ def SpeechSynthesis(result):
|
|
180 |
</html>
|
181 |
'''
|
182 |
|
183 |
-
components.html(documentHTML5, width=1280, height=
|
184 |
#return result
|
185 |
|
186 |
|
@@ -191,7 +191,6 @@ def StreamLLMChatResponse(prompt):
|
|
191 |
endpoint_url = API_URL
|
192 |
hf_token = API_KEY
|
193 |
client = InferenceClient(endpoint_url, token=hf_token)
|
194 |
-
st.write('Opened HF hub Inference Client for endpoint URL: ' + endpoint_url)
|
195 |
gen_kwargs = dict(
|
196 |
max_new_tokens=512,
|
197 |
top_k=30,
|
@@ -227,20 +226,11 @@ def StreamLLMChatResponse(prompt):
|
|
227 |
except:
|
228 |
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
229 |
|
230 |
-
#def query(filename):
|
231 |
-
# with open(filename, "rb") as f:
|
232 |
-
# data = f.read
|
233 |
-
# st.write('Posting request to model ' + API_URL_IE)
|
234 |
-
# response = requests.post(API_URL_IE, headers=headers, data=data)
|
235 |
-
# return response.json()
|
236 |
-
|
237 |
# 4. Run query with payload
|
238 |
def query(payload):
|
239 |
-
st.write('Posting request to model ' + API_URL_IE)
|
240 |
response = requests.post(API_URL, headers=headers, json=payload)
|
241 |
st.markdown(response.json())
|
242 |
return response.json()
|
243 |
-
|
244 |
def get_output(prompt):
|
245 |
return query({"inputs": prompt})
|
246 |
|
@@ -249,8 +239,7 @@ def generate_filename(prompt, file_type):
|
|
249 |
central = pytz.timezone('US/Central')
|
250 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
251 |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
252 |
-
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:
|
253 |
-
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
|
254 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
255 |
|
256 |
# 6. Speech transcription via OpenAI service
|
@@ -262,7 +251,6 @@ def transcribe_audio(openai_key, file_path, model):
|
|
262 |
}
|
263 |
with open(file_path, 'rb') as f:
|
264 |
data = {'file': f}
|
265 |
-
st.write('Transcribe Audio is Posting request to ' + OPENAI_API_URL)
|
266 |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
|
267 |
if response.status_code == 200:
|
268 |
st.write(response.json())
|
@@ -338,8 +326,6 @@ def get_table_download_link(file_path):
|
|
338 |
mime_type = 'text/html'
|
339 |
elif ext == '.md':
|
340 |
mime_type = 'text/markdown'
|
341 |
-
elif ext == '.wav':
|
342 |
-
mime_type = 'audio/wav'
|
343 |
else:
|
344 |
mime_type = 'application/octet-stream' # general binary data type
|
345 |
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
@@ -389,7 +375,6 @@ def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
|
|
389 |
res_box = st.empty()
|
390 |
collected_chunks = []
|
391 |
collected_messages = []
|
392 |
-
st.write('Running prompt with ' + model)
|
393 |
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
|
394 |
collected_chunks.append(chunk)
|
395 |
chunk_message = chunk['choices'][0]['delta']
|
@@ -463,7 +448,6 @@ def txt2chunks(text):
|
|
463 |
# Vector Store using FAISS
|
464 |
@st.cache_resource
|
465 |
def vector_store(text_chunks):
|
466 |
-
st.write('Retrieving OpenAI embeddings')
|
467 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
468 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
469 |
|
@@ -522,22 +506,30 @@ def get_zip_download_link(zip_file):
|
|
522 |
|
523 |
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
|
524 |
# My Inference Endpoint
|
525 |
-
#
|
526 |
# Original
|
527 |
#API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
|
528 |
-
#
|
529 |
-
API_URL_IE = "https://
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
|
|
|
|
|
|
|
|
534 |
headers = {
|
535 |
"Authorization": f"Bearer {HF_KEY}",
|
536 |
"Content-Type": "audio/wav"
|
537 |
}
|
538 |
|
539 |
#@st.cache_resource
|
540 |
-
|
|
|
|
|
|
|
|
|
541 |
|
542 |
def generate_filename(prompt, file_type):
|
543 |
central = pytz.timezone('US/Central')
|
@@ -561,28 +553,27 @@ def transcribe_audio(filename):
|
|
561 |
output = query(filename)
|
562 |
return output
|
563 |
|
|
|
564 |
def whisper_main():
|
565 |
-
|
566 |
-
|
567 |
|
568 |
# Audio, transcribe, GPT:
|
569 |
filename = save_and_play_audio(audio_recorder)
|
570 |
if filename is not None:
|
571 |
transcription = transcribe_audio(filename)
|
572 |
-
try:
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
create_file(filename_txt, transcript, response, should_save)
|
578 |
-
filename_wav = filename_txt.replace('.txt', '.wav')
|
579 |
-
import shutil
|
580 |
-
shutil.copyfile(filename, filename_wav)
|
581 |
-
if os.path.exists(filename):
|
582 |
-
os.remove(filename)
|
583 |
-
except:
|
584 |
-
st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.')
|
585 |
|
|
|
|
|
|
|
|
|
|
|
|
|
586 |
|
587 |
import streamlit as st
|
588 |
|
@@ -590,156 +581,132 @@ import streamlit as st
|
|
590 |
def StreamMedChatResponse(topic):
|
591 |
st.write(f"Showing resources or questions related to: {topic}")
|
592 |
|
|
|
|
|
|
|
593 |
|
594 |
-
|
595 |
-
def add_medical_exam_buttons():
|
596 |
-
# Medical exam terminology descriptions
|
597 |
-
descriptions = {
|
598 |
-
"White Blood Cells 🌊": "3 Q&A with emojis about types, facts, function, inputs and outputs of white blood cells 🎥",
|
599 |
-
"CT Imaging🦠": "3 Q&A with emojis on CT Imaging post surgery, how to, what to look for 💊",
|
600 |
-
"Hematoma 💉": "3 Q&A with emojis about hematoma and infection care and study including bacteria cultures and tests or labs💪",
|
601 |
-
"Post Surgery Wound Care 🍌": "3 Q&A with emojis on wound care, and good bedside manner 🩸",
|
602 |
-
"Healing and humor 💊": "3 Q&A with emojis on stories and humor about healing and caregiving 🚑",
|
603 |
-
"Psychology of bedside manner 🧬": "3 Q&A with emojis on bedside manner and how to make patients feel at ease🛠",
|
604 |
-
"CT scan 💊": "3 Q&A with analysis on infection using CT scan and packing for skin, cellulitus and fascia 🩺"
|
605 |
-
}
|
606 |
-
|
607 |
-
# Expander for medical topics
|
608 |
-
with st.expander("Medical Licensing Exam Topics 📚", expanded=False):
|
609 |
-
st.markdown("🩺 **Important**: Variety of topics for medical licensing exams.")
|
610 |
-
|
611 |
-
# Create buttons for each description with unique keys
|
612 |
-
for idx, (label, content) in enumerate(descriptions.items()):
|
613 |
-
button_key = f"button_{idx}"
|
614 |
-
if st.button(label, key=button_key):
|
615 |
-
st.write(f"Running {label}")
|
616 |
-
input='Create markdown outline for definition of topic ' + label + ' also short quiz with appropriate emojis and definitions for: ' + content
|
617 |
-
response=StreamLLMChatResponse(input)
|
618 |
-
filename = generate_filename(response, 'txt')
|
619 |
-
create_file(filename, input, response, should_save)
|
620 |
-
|
621 |
-
def add_medical_exam_buttons2():
|
622 |
-
with st.expander("Medical Licensing Exam Topics 📚", expanded=False):
|
623 |
-
st.markdown("🩺 **Important**: This section provides a variety of medical topics that are often encountered in medical licensing exams.")
|
624 |
-
|
625 |
-
# Define medical exam terminology descriptions
|
626 |
descriptions = {
|
627 |
-
"
|
628 |
-
"
|
629 |
-
"
|
630 |
-
"
|
631 |
-
"
|
632 |
-
"
|
633 |
-
"
|
|
|
634 |
}
|
635 |
|
636 |
# Create columns
|
637 |
col1, col2, col3, col4 = st.columns([1, 1, 1, 1], gap="small")
|
638 |
|
639 |
# Add buttons to columns
|
640 |
-
if col1.button("
|
641 |
-
|
|
|
642 |
|
643 |
-
if col2.button("
|
644 |
-
|
|
|
645 |
|
646 |
-
if col3.button("
|
647 |
-
|
|
|
648 |
|
649 |
-
if col4.button("
|
650 |
-
|
|
|
651 |
|
652 |
col5, col6, col7, col8 = st.columns([1, 1, 1, 1], gap="small")
|
653 |
|
654 |
-
if col5.button("
|
655 |
-
|
|
|
656 |
|
657 |
-
if col6.button("
|
658 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
659 |
|
660 |
-
if col7.button("Ramipril 💊"):
|
661 |
-
StreamLLMChatResponse(descriptions["Ramipril 💊"])
|
662 |
-
|
663 |
-
|
664 |
|
665 |
# 17. Main
|
666 |
def main():
|
667 |
|
668 |
-
|
669 |
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
|
670 |
|
671 |
# Add Wit and Humor buttons
|
672 |
# add_witty_humor_buttons()
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
with st.expander("Prompts 📚", expanded=False):
|
677 |
-
|
678 |
-
example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.")
|
679 |
-
if st.button("Run Prompt With Llama model", help="Click to run the prompt."):
|
680 |
-
try:
|
681 |
-
response=StreamLLMChatResponse(example_input)
|
682 |
-
create_file(filename, example_input, response, should_save)
|
683 |
-
except:
|
684 |
-
st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.')
|
685 |
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
st.markdown("**
|
711 |
for i, section in enumerate(list(document_sections)):
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
|
|
|
|
|
|
741 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
742 |
-
if st.sidebar.button("🗑 Delete All
|
743 |
for file in all_files:
|
744 |
os.remove(file)
|
745 |
st.experimental_rerun()
|
@@ -795,77 +762,36 @@ def main():
|
|
795 |
|
796 |
st.experimental_rerun()
|
797 |
|
798 |
-
|
799 |
-
# Function to encode file to base64
|
800 |
-
def get_base64_encoded_file(file_path):
|
801 |
-
with open(file_path, "rb") as file:
|
802 |
-
return base64.b64encode(file.read()).decode()
|
803 |
-
|
804 |
-
# Function to create a download link
|
805 |
-
def get_audio_download_link(file_path):
|
806 |
-
base64_file = get_base64_encoded_file(file_path)
|
807 |
-
return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">⬇️ Download Audio</a>'
|
808 |
-
|
809 |
-
# Compose a file sidebar of past encounters
|
810 |
-
all_files = glob.glob("*.wav")
|
811 |
-
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
|
812 |
-
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
813 |
-
|
814 |
-
filekey = 'delall'
|
815 |
-
if st.sidebar.button("🗑 Delete All Audio", key=filekey):
|
816 |
-
for file in all_files:
|
817 |
-
os.remove(file)
|
818 |
-
st.experimental_rerun()
|
819 |
-
|
820 |
-
for file in all_files:
|
821 |
-
col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed
|
822 |
-
with col1:
|
823 |
-
st.markdown(file)
|
824 |
-
if st.button("🎵", key="play_" + file): # play emoji button
|
825 |
-
audio_file = open(file, 'rb')
|
826 |
-
audio_bytes = audio_file.read()
|
827 |
-
st.audio(audio_bytes, format='audio/wav')
|
828 |
-
#st.markdown(get_audio_download_link(file), unsafe_allow_html=True)
|
829 |
-
#st.text_input(label="", value=file)
|
830 |
-
with col2:
|
831 |
-
if st.button("🗑", key="delete_" + file):
|
832 |
-
os.remove(file)
|
833 |
-
st.experimental_rerun()
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
# Feedback
|
838 |
# Step: Give User a Way to Upvote or Downvote
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
user_question
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
filename = generate_filename(raw, 'txt')
|
865 |
-
create_file(filename, raw, '', should_save)
|
866 |
|
867 |
# 18. Run AI Pipeline
|
868 |
if __name__ == "__main__":
|
869 |
whisper_main()
|
870 |
main()
|
871 |
-
|
|
|
34 |
import streamlit.components.v1 as components # Import Streamlit Components for HTML5
|
35 |
|
36 |
|
37 |
+
st.set_page_config(page_title="🐪Llama🦙Whisperer", layout="wide")
|
38 |
+
st.markdown('(Inference Endpoints)[https://ui.endpoints.huggingface.co/awacke1/endpoints]')
|
39 |
|
40 |
def add_Med_Licensing_Exam_Dataset():
|
41 |
import streamlit as st
|
|
|
92 |
# 1. Constants and Top Level UI Variables
|
93 |
|
94 |
# My Inference API Copy
|
95 |
+
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
|
96 |
# Original:
|
97 |
+
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
|
98 |
API_KEY = os.getenv('API_KEY')
|
99 |
MODEL1="meta-llama/Llama-2-7b-chat-hf"
|
100 |
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
|
|
|
104 |
"Content-Type": "application/json"
|
105 |
}
|
106 |
key = os.getenv('OPENAI_API_KEY')
|
107 |
+
prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
|
108 |
should_save = st.sidebar.checkbox("💾 Save", value=True, help="Save your session data.")
|
109 |
|
110 |
# 2. Prompt label button demo for LLM
|
|
|
128 |
col1, col2, col3 = st.columns([1, 1, 1], gap="small")
|
129 |
|
130 |
# Add buttons to columns
|
131 |
+
if col1.button("Generate Limericks 😂"):
|
132 |
StreamLLMChatResponse(descriptions["Generate Limericks 😂"])
|
133 |
|
134 |
if col2.button("Wise Quotes 🧙"):
|
135 |
StreamLLMChatResponse(descriptions["Wise Quotes 🧙"])
|
136 |
|
137 |
+
if col3.button("Funny Rhymes 🎤"):
|
138 |
+
StreamLLMChatResponse(descriptions["Funny Rhymes 🎤"])
|
139 |
|
140 |
col4, col5, col6 = st.columns([1, 1, 1], gap="small")
|
141 |
|
142 |
+
if col4.button("Medical Jokes 💉"):
|
143 |
+
StreamLLMChatResponse(descriptions["Medical Jokes 💉"])
|
144 |
|
145 |
if col5.button("Minnesota Humor ❄️"):
|
146 |
StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"])
|
147 |
|
148 |
+
if col6.button("Top Funny Stories 📖"):
|
149 |
+
StreamLLMChatResponse(descriptions["Top Funny Stories 📖"])
|
150 |
|
151 |
col7 = st.columns(1, gap="small")
|
152 |
|
153 |
+
if col7[0].button("More Funny Rhymes 🎙️"):
|
154 |
+
StreamLLMChatResponse(descriptions["More Funny Rhymes 🎙️"])
|
155 |
|
156 |
def SpeechSynthesis(result):
|
157 |
documentHTML5='''
|
|
|
180 |
</html>
|
181 |
'''
|
182 |
|
183 |
+
components.html(documentHTML5, width=1280, height=1024)
|
184 |
#return result
|
185 |
|
186 |
|
|
|
191 |
endpoint_url = API_URL
|
192 |
hf_token = API_KEY
|
193 |
client = InferenceClient(endpoint_url, token=hf_token)
|
|
|
194 |
gen_kwargs = dict(
|
195 |
max_new_tokens=512,
|
196 |
top_k=30,
|
|
|
226 |
except:
|
227 |
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
228 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# 4. Run query with payload
|
230 |
def query(payload):
|
|
|
231 |
response = requests.post(API_URL, headers=headers, json=payload)
|
232 |
st.markdown(response.json())
|
233 |
return response.json()
|
|
|
234 |
def get_output(prompt):
|
235 |
return query({"inputs": prompt})
|
236 |
|
|
|
239 |
central = pytz.timezone('US/Central')
|
240 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
241 |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
|
242 |
+
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
|
|
|
243 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
244 |
|
245 |
# 6. Speech transcription via OpenAI service
|
|
|
251 |
}
|
252 |
with open(file_path, 'rb') as f:
|
253 |
data = {'file': f}
|
|
|
254 |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
|
255 |
if response.status_code == 200:
|
256 |
st.write(response.json())
|
|
|
326 |
mime_type = 'text/html'
|
327 |
elif ext == '.md':
|
328 |
mime_type = 'text/markdown'
|
|
|
|
|
329 |
else:
|
330 |
mime_type = 'application/octet-stream' # general binary data type
|
331 |
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
|
|
|
375 |
res_box = st.empty()
|
376 |
collected_chunks = []
|
377 |
collected_messages = []
|
|
|
378 |
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
|
379 |
collected_chunks.append(chunk)
|
380 |
chunk_message = chunk['choices'][0]['delta']
|
|
|
448 |
# Vector Store using FAISS
|
449 |
@st.cache_resource
|
450 |
def vector_store(text_chunks):
|
|
|
451 |
embeddings = OpenAIEmbeddings(openai_api_key=key)
|
452 |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
453 |
|
|
|
506 |
|
507 |
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
|
508 |
# My Inference Endpoint
|
509 |
+
#API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
|
510 |
# Original
|
511 |
#API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
|
512 |
+
# A10 Inference Endpoint for whisper large tests
|
513 |
+
API_URL_IE = "https://hifdvffh2em0wn50.us-east-1.aws.endpoints.huggingface.cloud"
|
514 |
+
|
515 |
+
MODEL2 = "openai/whisper-small.en"
|
516 |
+
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
|
517 |
+
#headers = {
|
518 |
+
# "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
|
519 |
+
# "Content-Type": "audio/wav"
|
520 |
+
#}
|
521 |
+
HF_KEY = os.getenv('HF_KEY')
|
522 |
headers = {
|
523 |
"Authorization": f"Bearer {HF_KEY}",
|
524 |
"Content-Type": "audio/wav"
|
525 |
}
|
526 |
|
527 |
#@st.cache_resource
|
528 |
+
def query(filename):
|
529 |
+
with open(filename, "rb") as f:
|
530 |
+
data = f.read()
|
531 |
+
response = requests.post(API_URL_IE, headers=headers, data=data)
|
532 |
+
return response.json()
|
533 |
|
534 |
def generate_filename(prompt, file_type):
|
535 |
central = pytz.timezone('US/Central')
|
|
|
553 |
output = query(filename)
|
554 |
return output
|
555 |
|
556 |
+
|
557 |
def whisper_main():
|
558 |
+
st.title("1🐪Llama🦙Whisperer")
|
559 |
+
st.write("Record your speech and get the text.")
|
560 |
|
561 |
# Audio, transcribe, GPT:
|
562 |
filename = save_and_play_audio(audio_recorder)
|
563 |
if filename is not None:
|
564 |
transcription = transcribe_audio(filename)
|
565 |
+
#try:
|
566 |
+
|
567 |
+
transcript = transcription['text']
|
568 |
+
#except:
|
569 |
+
#st.write('Whisper model is asleep. Starting up now on T4 GPU - please give 5 minutes then retry as it scales up from zero to activate running container(s).')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
|
571 |
+
st.write(transcript)
|
572 |
+
response = StreamLLMChatResponse(transcript)
|
573 |
+
# st.write(response) - redundant with streaming result?
|
574 |
+
filename = generate_filename(transcript, ".txt")
|
575 |
+
create_file(filename, transcript, response, should_save)
|
576 |
+
#st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
577 |
|
578 |
import streamlit as st
|
579 |
|
|
|
581 |
def StreamMedChatResponse(topic):
|
582 |
st.write(f"Showing resources or questions related to: {topic}")
|
583 |
|
584 |
+
def add_multi_system_agent_topics():
|
585 |
+
with st.expander("Multi-System Agent AI Topics 🤖", expanded=True):
|
586 |
+
st.markdown("🤖 **Explore Multi-System Agent AI Topics**: This section provides a variety of topics related to multi-system agent AI systems.")
|
587 |
|
588 |
+
# Define multi-system agent AI topics and descriptions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
589 |
descriptions = {
|
590 |
+
"Reinforcement Learning 🎮": "Questions related to reinforcement learning algorithms and applications 🕹️",
|
591 |
+
"Natural Language Processing 🗣️": "Questions about natural language processing techniques and chatbot development 🗨️",
|
592 |
+
"Multi-Agent Systems 🤝": "Questions pertaining to multi-agent systems and cooperative AI interactions 🤖",
|
593 |
+
"Conversational AI 🗨️": "Questions on building conversational AI agents and chatbots for various platforms 💬",
|
594 |
+
"Distributed AI Systems 🌐": "Questions about distributed AI systems and their implementation in networked environments 🌐",
|
595 |
+
"AI Ethics and Bias 🤔": "Questions related to ethics and bias considerations in AI systems and decision-making 🧠",
|
596 |
+
"AI in Healthcare 🏥": "Questions about the application of AI in healthcare and medical diagnosis 🩺",
|
597 |
+
"AI in Autonomous Vehicles 🚗": "Questions on the use of AI in autonomous vehicles and self-driving technology 🚗"
|
598 |
}
|
599 |
|
600 |
# Create columns
|
601 |
col1, col2, col3, col4 = st.columns([1, 1, 1, 1], gap="small")
|
602 |
|
603 |
# Add buttons to columns
|
604 |
+
if col1.button("Reinforcement Learning 🎮"):
|
605 |
+
st.write(descriptions["Reinforcement Learning 🎮"])
|
606 |
+
StreamLLMChatResponse(descriptions["Reinforcement Learning 🎮"])
|
607 |
|
608 |
+
if col2.button("Natural Language Processing 🗣️"):
|
609 |
+
st.write(descriptions["Natural Language Processing 🗣️"])
|
610 |
+
StreamLLMChatResponse(descriptions["Natural Language Processing 🗣️"])
|
611 |
|
612 |
+
if col3.button("Multi-Agent Systems 🤝"):
|
613 |
+
st.write(descriptions["Multi-Agent Systems 🤝"])
|
614 |
+
StreamLLMChatResponse(descriptions["Multi-Agent Systems 🤝"])
|
615 |
|
616 |
+
if col4.button("Conversational AI 🗨️"):
|
617 |
+
st.write(descriptions["Conversational AI 🗨️"])
|
618 |
+
StreamLLMChatResponse(descriptions["Conversational AI 🗨️"])
|
619 |
|
620 |
col5, col6, col7, col8 = st.columns([1, 1, 1, 1], gap="small")
|
621 |
|
622 |
+
if col5.button("Distributed AI Systems 🌐"):
|
623 |
+
st.write(descriptions["Distributed AI Systems 🌐"])
|
624 |
+
StreamLLMChatResponse(descriptions["Distributed AI Systems 🌐"])
|
625 |
|
626 |
+
if col6.button("AI Ethics and Bias 🤔"):
|
627 |
+
st.write(descriptions["AI Ethics and Bias 🤔"])
|
628 |
+
StreamLLMChatResponse(descriptions["AI Ethics and Bias 🤔"])
|
629 |
+
|
630 |
+
if col7.button("AI in Healthcare 🏥"):
|
631 |
+
st.write(descriptions["AI in Healthcare 🏥"])
|
632 |
+
StreamLLMChatResponse(descriptions["AI in Healthcare 🏥"])
|
633 |
+
|
634 |
+
if col8.button("AI in Autonomous Vehicles 🚗"):
|
635 |
+
st.write(descriptions["AI in Autonomous Vehicles 🚗"])
|
636 |
+
StreamLLMChatResponse(descriptions["AI in Autonomous Vehicles 🚗"])
|
637 |
|
|
|
|
|
|
|
|
|
638 |
|
639 |
# 17. Main
|
640 |
def main():
|
641 |
|
642 |
+
st.title("Try Some Topics:")
|
643 |
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
|
644 |
|
645 |
# Add Wit and Humor buttons
|
646 |
# add_witty_humor_buttons()
|
647 |
+
# Calling the function to add the multi-system agent AI topics buttons
|
648 |
+
add_multi_system_agent_topics()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
|
650 |
+
example_input = st.text_input("Enter your example text:", value=prompt, help="Enter text to get a response from DromeLlama.")
|
651 |
+
if st.button("Run Prompt With DromeLlama", help="Click to run the prompt."):
|
652 |
+
try:
|
653 |
+
StreamLLMChatResponse(example_input)
|
654 |
+
except:
|
655 |
+
st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
|
656 |
+
|
657 |
+
openai.api_key = os.getenv('OPENAI_KEY')
|
658 |
+
menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
|
659 |
+
choice = st.sidebar.selectbox("Output File Type:", menu)
|
660 |
+
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
|
661 |
+
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
|
662 |
+
collength, colupload = st.columns([2,3]) # adjust the ratio as needed
|
663 |
+
with collength:
|
664 |
+
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
|
665 |
+
with colupload:
|
666 |
+
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
|
667 |
+
document_sections = deque()
|
668 |
+
document_responses = {}
|
669 |
+
if uploaded_file is not None:
|
670 |
+
file_content = read_file_content(uploaded_file, max_length)
|
671 |
+
document_sections.extend(divide_document(file_content, max_length))
|
672 |
+
if len(document_sections) > 0:
|
673 |
+
if st.button("👁️ View Upload"):
|
674 |
+
st.markdown("**Sections of the uploaded file:**")
|
675 |
for i, section in enumerate(list(document_sections)):
|
676 |
+
st.markdown(f"**Section {i+1}**\n{section}")
|
677 |
+
st.markdown("**Chat with the model:**")
|
678 |
+
for i, section in enumerate(list(document_sections)):
|
679 |
+
if i in document_responses:
|
680 |
+
st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
|
681 |
+
else:
|
682 |
+
if st.button(f"Chat about Section {i+1}"):
|
683 |
+
st.write('Reasoning with your inputs...')
|
684 |
+
response = chat_with_model(user_prompt, section, model_choice)
|
685 |
+
st.write('Response:')
|
686 |
+
st.write(response)
|
687 |
+
document_responses[i] = response
|
688 |
+
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
|
689 |
+
create_file(filename, user_prompt, response, should_save)
|
690 |
+
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
691 |
+
if st.button('💬 Chat'):
|
692 |
+
st.write('Reasoning with your inputs...')
|
693 |
+
user_prompt_sections = divide_prompt(user_prompt, max_length)
|
694 |
+
full_response = ''
|
695 |
+
for prompt_section in user_prompt_sections:
|
696 |
+
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
|
697 |
+
full_response += response + '\n' # Combine the responses
|
698 |
+
response = full_response
|
699 |
+
st.write('Response:')
|
700 |
+
st.write(response)
|
701 |
+
filename = generate_filename(user_prompt, choice)
|
702 |
+
create_file(filename, user_prompt, response, should_save)
|
703 |
+
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
|
704 |
+
|
705 |
+
# Compose a file sidebar of past encounters
|
706 |
+
all_files = glob.glob("*.*")
|
707 |
+
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
|
708 |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
|
709 |
+
if st.sidebar.button("🗑 Delete All"):
|
710 |
for file in all_files:
|
711 |
os.remove(file)
|
712 |
st.experimental_rerun()
|
|
|
762 |
|
763 |
st.experimental_rerun()
|
764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
765 |
# Feedback
|
766 |
# Step: Give User a Way to Upvote or Downvote
|
767 |
+
feedback = st.radio("Step 8: Give your feedback", ("👍 Upvote", "👎 Downvote"))
|
768 |
+
if feedback == "👍 Upvote":
|
769 |
+
st.write("You upvoted 👍. Thank you for your feedback!")
|
770 |
+
else:
|
771 |
+
st.write("You downvoted 👎. Thank you for your feedback!")
|
772 |
+
|
773 |
+
load_dotenv()
|
774 |
+
st.write(css, unsafe_allow_html=True)
|
775 |
+
st.header("Chat with documents :books:")
|
776 |
+
user_question = st.text_input("Ask a question about your documents:")
|
777 |
+
if user_question:
|
778 |
+
process_user_input(user_question)
|
779 |
+
with st.sidebar:
|
780 |
+
st.subheader("Your documents")
|
781 |
+
docs = st.file_uploader("import documents", accept_multiple_files=True)
|
782 |
+
with st.spinner("Processing"):
|
783 |
+
raw = pdf2txt(docs)
|
784 |
+
if len(raw) > 0:
|
785 |
+
length = str(len(raw))
|
786 |
+
text_chunks = txt2chunks(raw)
|
787 |
+
vectorstore = vector_store(text_chunks)
|
788 |
+
st.session_state.conversation = get_chain(vectorstore)
|
789 |
+
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
|
790 |
+
filename = generate_filename(raw, 'txt')
|
791 |
+
create_file(filename, raw, '', should_save)
|
|
|
|
|
792 |
|
793 |
# 18. Run AI Pipeline
|
794 |
if __name__ == "__main__":
|
795 |
whisper_main()
|
796 |
main()
|
797 |
+
add_Med_Licensing_Exam_Dataset()
|