awacke1's picture
Update app.py
ef1a324 verified
raw
history blame
15.5 kB
import streamlit as st
from gradio_client import Client
import time
import concurrent.futures
import os
from PIL import Image
import io
import requests
from huggingface_hub import HfApi, login
# Initialize session state - must be first
if 'hf_token' not in st.session_state:
st.session_state['hf_token'] = None
if 'is_authenticated' not in st.session_state:
st.session_state['is_authenticated'] = False
class ModelGenerator:
@staticmethod
def generate_midjourney(prompt, token):
try:
client = Client("mukaist/Midjourney", hf_token=token)
result = client.predict(
prompt=prompt,
negative_prompt="(deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck",
use_negative_prompt=True,
style="2560 x 1440",
seed=0,
width=1024,
height=1024,
guidance_scale=6,
randomize_seed=True,
api_name="/run"
)
if isinstance(result, tuple):
image_data = result[0] if len(result) > 0 else None
elif isinstance(result, list):
image_data = result[0] if len(result) > 0 else None
else:
image_data = result
if image_data:
if isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("Midjourney", Image.open(io.BytesIO(response.content)))
return ("Midjourney", Image.open(image_data))
elif isinstance(image_data, bytes):
return ("Midjourney", Image.open(io.BytesIO(image_data)))
elif hasattr(image_data, 'read'): # File-like object
return ("Midjourney", Image.open(image_data))
return ("Midjourney", "Error: No valid image data found")
except Exception as e:
return ("Midjourney", f"Error: {str(e)}")
@staticmethod
def generate_stable_cascade(prompt, token):
try:
client = Client("multimodalart/stable-cascade", hf_token=token)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
width=1024,
height=1024,
prior_num_inference_steps=20,
prior_guidance_scale=4,
decoder_num_inference_steps=10,
decoder_guidance_scale=0,
num_images_per_prompt=1,
api_name="/run"
)
if isinstance(result, (str, bytes)):
return ("Stable Cascade", Image.open(io.BytesIO(result) if isinstance(result, bytes) else result))
elif isinstance(result, list) and len(result) > 0:
return ("Stable Cascade", Image.open(io.BytesIO(result[0]) if isinstance(result[0], bytes) else result[0]))
return ("Stable Cascade", "Error: No valid image data found")
except Exception as e:
return ("Stable Cascade", f"Error: {str(e)}")
@staticmethod
def generate_stable_diffusion_3(prompt, token):
try:
client = Client("stabilityai/stable-diffusion-3-medium", hf_token=token)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=5,
num_inference_steps=28,
api_name="/infer"
)
if isinstance(result, bytes):
return ("SD 3 Medium", Image.open(io.BytesIO(result)))
elif isinstance(result, str):
if result.startswith('http'):
response = requests.get(result)
return ("SD 3 Medium", Image.open(io.BytesIO(response.content)))
return ("SD 3 Medium", Image.open(result))
elif isinstance(result, list) and len(result) > 0:
image_data = result[0]
if isinstance(image_data, bytes):
return ("SD 3 Medium", Image.open(io.BytesIO(image_data)))
elif isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("SD 3 Medium", Image.open(io.BytesIO(response.content)))
return ("SD 3 Medium", Image.open(image_data))
return ("SD 3 Medium", "Error: No valid image data found")
except Exception as e:
return ("SD 3 Medium", f"Error: {str(e)}")
@staticmethod
def generate_stable_diffusion_35(prompt, token):
try:
client = Client("stabilityai/stable-diffusion-3.5-large", hf_token=token)
result = client.predict(
prompt=prompt,
negative_prompt=prompt,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=4.5,
num_inference_steps=40,
api_name="/infer"
)
if isinstance(result, bytes):
return ("SD 3.5 Large", Image.open(io.BytesIO(result)))
elif isinstance(result, str):
if result.startswith('http'):
response = requests.get(result)
return ("SD 3.5 Large", Image.open(io.BytesIO(response.content)))
return ("SD 3.5 Large", Image.open(result))
elif isinstance(result, list) and len(result) > 0:
image_data = result[0]
if isinstance(image_data, bytes):
return ("SD 3.5 Large", Image.open(io.BytesIO(image_data)))
elif isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("SD 3.5 Large", Image.open(io.BytesIO(response.content)))
return ("SD 3.5 Large", Image.open(image_data))
return ("SD 3.5 Large", "Error: No valid image data found")
except Exception as e:
return ("SD 3.5 Large", f"Error: {str(e)}")
@staticmethod
def generate_playground_v2_5(prompt, token):
try:
client = Client("https://playgroundai-playground-v2-5.hf.space/--replicas/ji5gy/",
hf_token=token)
result = client.predict(
prompt,
prompt, # negative prompt
True, # use negative prompt
0, # seed
1024, # width
1024, # height
7.5, # guidance scale
True, # randomize seed
api_name="/run"
)
if isinstance(result, tuple) and result[0] and len(result[0]) > 0:
image_data = result[0][0].get('image')
if image_data:
if isinstance(image_data, str):
if image_data.startswith('http'):
response = requests.get(image_data)
return ("Playground v2.5", Image.open(io.BytesIO(response.content)))
return ("Playground v2.5", Image.open(image_data))
return ("Playground v2.5", Image.open(io.BytesIO(image_data)))
return ("Playground v2.5", "Error: No image generated")
except Exception as e:
return ("Playground v2.5", f"Error: {str(e)}")
def generate_images(prompt, selected_models):
token = st.session_state.get('hf_token')
if not token:
return [("Error", "No authentication token found")]
results = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
model_map = {
"Midjourney": lambda p: ModelGenerator.generate_midjourney(p, token),
"Stable Cascade": lambda p: ModelGenerator.generate_stable_cascade(p, token),
"SD 3 Medium": lambda p: ModelGenerator.generate_stable_diffusion_3(p, token),
"SD 3.5 Large": lambda p: ModelGenerator.generate_stable_diffusion_35(p, token),
"Playground v2.5": lambda p: ModelGenerator.generate_playground_v2_5(p, token)
}
for model in selected_models:
if model in model_map:
futures.append(executor.submit(model_map[model], prompt))
for future in concurrent.futures.as_completed(futures):
try:
result = future.result()
if result:
results.append(result)
except Exception as e:
st.error(f"Error during image generation: {str(e)}")
return results
def handle_prompt_click(prompt_text, key):
if not st.session_state.get('is_authenticated') or not st.session_state.get('hf_token'):
st.error("Please login with your HuggingFace account first!")
return
st.session_state[f'selected_prompt_{key}'] = prompt_text
selected_models = st.session_state.get('selected_models', [])
if not selected_models:
st.warning("Please select at least one model from the sidebar!")
return
with st.spinner('Generating artwork...'):
results = generate_images(prompt_text, selected_models)
st.session_state[f'generated_images_{key}'] = results
st.success("Artwork generated successfully!")
def main():
st.title("๐ŸŽจ Multi-Model Art Generator")
# Handle authentication in sidebar
with st.sidebar:
st.header("๐Ÿ” Authentication")
if st.session_state.get('is_authenticated') and st.session_state.get('hf_token'):
st.success("โœ“ Logged in to HuggingFace")
if st.button("Logout"):
st.session_state['hf_token'] = None
st.session_state['is_authenticated'] = False
st.rerun()
else:
token = st.text_input("Enter HuggingFace Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
if st.button("Login"):
if token:
try:
# Verify token is valid
api = HfApi(token=token)
api.whoami()
st.session_state['hf_token'] = token
st.session_state['is_authenticated'] = True
st.success("Successfully logged in!")
st.rerun()
except Exception as e:
st.error(f"Authentication failed: {str(e)}")
else:
st.error("Please enter your HuggingFace token")
if st.session_state.get('is_authenticated') and st.session_state.get('hf_token'):
st.markdown("---")
st.header("Model Selection")
st.session_state['selected_models'] = st.multiselect(
"Choose AI Models",
["Midjourney", "Stable Cascade", "SD 3 Medium", "SD 3.5 Large", "Playground v2.5"],
default=["Midjourney"]
)
st.markdown("---")
st.markdown("### Selected Models:")
for model in st.session_state['selected_models']:
st.write(f"โœ“ {model}")
st.markdown("---")
st.markdown("### Model Information:")
st.markdown("""
- **Midjourney**: Best for artistic and creative imagery
- **Stable Cascade**: New architecture with high detail
- **SD 3 Medium**: Fast and efficient generation
- **SD 3.5 Large**: Highest quality, slower generation
- **Playground v2.5**: Advanced model with high customization
""")
# Only show the main interface if authenticated
if st.session_state.get('is_authenticated') and st.session_state.get('hf_token'):
st.markdown("### Select a prompt style to generate artwork:")
prompt_emojis = {
"AIart/AIArtistCommunity": "๐Ÿค–",
"Black & White": "โšซโšช",
"Black & Yellow": "โšซ๐Ÿ’›",
"Blindfold": "๐Ÿ™ˆ",
"Break": "๐Ÿ’”",
"Broken": "๐Ÿ”จ",
"Christmas Celebrations art": "๐ŸŽ„",
"Colorful Art": "๐ŸŽจ",
"Crimson art": "๐Ÿ”ด",
"Eyes Art": "๐Ÿ‘๏ธ",
"Going out with Style": "๐Ÿ’ƒ",
"Hooded Girl": "๐Ÿงฅ",
"Lips": "๐Ÿ‘„",
"MAEKHLONG": "๐Ÿฎ",
"Mermaid": "๐Ÿงœโ€โ™€๏ธ",
"Morning Sunshine": "๐ŸŒ…",
"Music Art": "๐ŸŽต",
"Owl": "๐Ÿฆ‰",
"Pink": "๐Ÿ’—",
"Purple": "๐Ÿ’œ",
"Rain": "๐ŸŒง๏ธ",
"Red Moon": "๐ŸŒ‘",
"Rose": "๐ŸŒน",
"Snow": "โ„๏ธ",
"Spacesuit Girl": "๐Ÿ‘ฉโ€๐Ÿš€",
"Steampunk": "โš™๏ธ",
"Succubus": "๐Ÿ˜ˆ",
"Sunlight": "โ˜€๏ธ",
"Weird art": "๐ŸŽญ",
"White Hair": "๐Ÿ‘ฑโ€โ™€๏ธ",
"Wings art": "๐Ÿ‘ผ",
"Woman with Sword": "โš”๏ธ"
}
col1, col2, col3 = st.columns(3)
for idx, (prompt, emoji) in enumerate(prompt_emojis.items()):
full_prompt = f"QT {prompt}"
col = [col1, col2, col3][idx % 3]
with col:
if st.button(f"{emoji} {prompt}", key=f"btn_{idx}"):
handle_prompt_click(full_prompt, idx)
st.markdown("---")
st.markdown("### Generated Artwork:")
for key in st.session_state:
if key.startswith('selected_prompt_'):
idx = key.split('_')[-1]
images_key = f'generated_images_{idx}'
if images_key in st.session_state:
st.write("Prompt:", st.session_state[key])
cols = st.columns(len(st.session_state[images_key]))
for col, (model_name, result) in zip(cols, st.session_state[images_key]):
with col:
st.markdown(f"**{model_name}**")
if isinstance(result, str) and result.startswith("Error"):
st.error(result)
else:
st.image(result, use_container_width=True)
else:
st.info("Please login with your HuggingFace account to use the app")
if __name__ == "__main__":
main()