awacke1's picture
Update app.py
9c75218
raw
history blame
7.54 kB
from html import escape
import re
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel
from st_clickable_images import clickable_images
@st.cache(
show_spinner=False,
hash_funcs={
CLIPModel: lambda _: None,
CLIPProcessor: lambda _: None,
dict: lambda _: None,
},
)
def load():
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
for k in [0, 1]:
embeddings[k] = embeddings[k] / np.linalg.norm(
embeddings[k], axis=1, keepdims=True
)
return model, processor, df, embeddings
model, processor, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
result = model.get_text_features(**inputs).detach().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, n_results=24):
positive_embeddings = None
def concatenate_embeddings(e1, e2):
if e1 is None:
return e2
else:
return np.concatenate((e1, e2), axis=0)
splitted_query = query.split("EXCLUDING ")
dot_product = 0
k = 0 if corpus == "Unsplash" else 1
if len(splitted_query[0]) > 0:
positive_queries = splitted_query[0].split(";")
for positive_query in positive_queries:
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
if match:
corpus2, idx, remainder = match.groups()
idx, remainder = int(idx), remainder.strip()
k2 = 0 if corpus2 == "Unsplash" else 1
positive_embeddings = concatenate_embeddings(
positive_embeddings, embeddings[k2][idx : idx + 1, :]
)
if len(remainder) > 0:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([remainder])
)
else:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([positive_query])
)
dot_product = embeddings[k] @ positive_embeddings.T
dot_product = dot_product - np.median(dot_product, axis=0)
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
dot_product = np.min(dot_product, axis=1)
if len(splitted_query) > 1:
negative_queries = (" ".join(splitted_query[1:])).split(";")
negative_embeddings = compute_text_embeddings(negative_queries)
dot_product2 = embeddings[k] @ negative_embeddings.T
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
i,
)
for i in results
]
description = """
# Semantic image search
**Enter your query and hit enter**
"""
howto = """
- Click image to find similar images
- Use "**;**" to combine multiple queries)
- Use "**EXCLUDING**", to exclude a query
"""
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
section.main>div:first-child {
padding-top: 0px;
}
section:not(.main)>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
with st.sidebar.expander("Advanced use"):
st.markdown(howto)
st.sidebar.markdown(f"Try these test prompts: Lord of the Rings, Interstellar, Back to the Future, Avengers, The Matrix, WALL·E, Castle , Dune, Blade Runner, Guardians of the Galaxy, Aliens, Her, Legend of the Ten Rings, Harry Potter, Logan, Dragon, Scissorhands, Captain, Deadpool, ThorArrivval, Wick, Peaks, Labyrinth, Terabithia, RoboCop, Wonder Woman, Meteor, NYC, Stork, Pink, Yellow, Orange, Blue, tulip, dog, Dragon, sunrise, kitten, Swimming, jellyfish, Beach, puppy, Coral")
st.sidebar.markdown(f"Unsplash has categories that match: backgrounds, photos, nature, iphone, etc")
st.sidebar.markdown(f"Unsplash images contain animals, apps, events, feelings, food, travel, nature, people, religion, sports, things, stock")
st.sidebar.markdown(f"Unsplash things include flag, tree, clock, money, tattoo, arrow, book, car, fireworks, ghost, health, kiss, dance, balloon, crown, eye, house, music, airplane, lighthouse, typewriter, toys")
st.sidebar.markdown(f"unsplash feelings include funny, heart, love, cool, congratulations, love, scary, cute, friendship, inspirational, hug, sad, cursed, beautiful, crazy, respect, transformation, peaceful, happy")
st.sidebar.markdown(f"unsplash people contain baby, life, women, family, girls, pregnancy, society, old people, musician, attractive, bohemian")
st.sidebar.markdown(f"imagenet queries include: photo of, photo of many, sculpture of, rendering of, graffiti of, tattoo of, embroidered, drawing of, plastic, black and white, painting, video game, doodle, origami, sketch, etc")
_, c, _ = st.columns((1, 3, 1))
if "query" in st.session_state:
query = c.text_input("", value=st.session_state["query"])
else:
query = c.text_input("", value="lighthouse")
corpus = st.radio("", ["Unsplash"])
#corpus = st.radio("", ["Unsplash", "Movies"])
if len(query) > 0:
results = image_search(query, corpus)
clicked = clickable_images(
[result[0] for result in results],
titles=[result[1] for result in results],
div_style={
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
},
img_style={"margin": "2px", "height": "200px"},
)
if clicked >= 0:
change_query = False
if "last_clicked" not in st.session_state:
change_query = True
else:
if clicked != st.session_state["last_clicked"]:
change_query = True
if change_query:
st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
st.experimental_rerun()
if __name__ == "__main__":
main()