Spaces:
Runtime error
Runtime error
all together
Browse files
app.py
CHANGED
@@ -1,33 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import StableDiffusionXLPipeline
|
4 |
from diffusers.schedulers import TCDScheduler
|
|
|
5 |
import spaces
|
6 |
from PIL import Image
|
7 |
|
8 |
SAFETY_CHECKER = True
|
9 |
|
10 |
-
# Constants
|
11 |
-
base = "stabilityai/stable-diffusion-xl-base-1.0"
|
12 |
-
repo = "ByteDance/SDXL-Lightning"
|
13 |
checkpoints = {
|
14 |
-
"2-Step": ["
|
15 |
-
"4-Step": ["
|
16 |
-
"8-Step": ["
|
17 |
-
"16-Step": ["
|
18 |
-
"Normal CFG 4-Step": ["
|
19 |
-
"Normal CFG 8-Step": ["
|
20 |
-
"Normal CFG 16-Step": ["
|
21 |
-
"LCM-Like LoRA": [
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
|
24 |
|
25 |
loaded = None
|
26 |
|
27 |
-
# Ensure model and scheduler are initialized in GPU-enabled function
|
28 |
if torch.cuda.is_available():
|
29 |
-
|
30 |
-
base
|
|
|
|
|
|
|
|
|
|
|
31 |
).to("cuda")
|
32 |
|
33 |
if SAFETY_CHECKER:
|
@@ -52,29 +58,35 @@ if SAFETY_CHECKER:
|
|
52 |
return images, has_nsfw_concepts
|
53 |
|
54 |
|
55 |
-
# Function
|
56 |
@spaces.GPU(enable_queue=True)
|
57 |
-
def generate_image(
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
global loaded
|
59 |
-
|
60 |
-
|
61 |
-
checkpoint = checkpoints[ckpt][0]
|
62 |
-
num_inference_steps = checkpoints[ckpt][1]
|
63 |
guidance_scale = checkpoints[ckpt][2]
|
|
|
64 |
|
65 |
-
if loaded !=
|
66 |
-
pipe.scheduler = TCDScheduler(
|
67 |
-
num_train_timesteps=1000,
|
68 |
-
beta_start=0.00085,
|
69 |
-
beta_end=0.012,
|
70 |
-
beta_schedule="scaled_linear",
|
71 |
-
timestep_spacing="trailing",
|
72 |
-
)
|
73 |
pipe.load_lora_weights(
|
74 |
-
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=
|
75 |
)
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
results = pipe(
|
80 |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
@@ -89,7 +101,12 @@ def generate_image(prompt, ckpt):
|
|
89 |
return results.images[0]
|
90 |
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
css = """
|
95 |
.gradio-container {
|
@@ -97,31 +114,76 @@ css = """
|
|
97 |
}
|
98 |
"""
|
99 |
with gr.Blocks(css=css) as demo:
|
100 |
-
gr.
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
)
|
104 |
with gr.Group():
|
105 |
with gr.Row():
|
106 |
-
prompt = gr.Textbox(label="
|
107 |
ckpt = gr.Dropdown(
|
108 |
label="Select inference steps",
|
109 |
choices=list(checkpoints.keys()),
|
110 |
value="4-Step",
|
111 |
-
interactive=True,
|
112 |
)
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
fn=generate_image,
|
118 |
-
|
119 |
-
outputs=img,
|
120 |
)
|
121 |
-
|
|
|
122 |
fn=generate_image,
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
|
127 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LCMScheduler
|
4 |
from diffusers.schedulers import TCDScheduler
|
5 |
+
|
6 |
import spaces
|
7 |
from PIL import Image
|
8 |
|
9 |
SAFETY_CHECKER = True
|
10 |
|
|
|
|
|
|
|
11 |
checkpoints = {
|
12 |
+
"2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0],
|
13 |
+
"4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0],
|
14 |
+
"8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0],
|
15 |
+
"16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0],
|
16 |
+
"Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5],
|
17 |
+
"Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5],
|
18 |
+
"Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5],
|
19 |
+
"LCM-Like LoRA": [
|
20 |
+
"pcm_{}_lcmlike_lora_converted.safetensors",
|
21 |
+
4,
|
22 |
+
0.0,
|
23 |
+
],
|
24 |
}
|
25 |
|
26 |
|
27 |
loaded = None
|
28 |
|
|
|
29 |
if torch.cuda.is_available():
|
30 |
+
pipe_sdxl = StableDiffusionXLPipeline.from_pretrained(
|
31 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
32 |
+
torch_dtype=torch.float16,
|
33 |
+
variant="fp16",
|
34 |
+
).to("cuda")
|
35 |
+
pipe_sd15 = StableDiffusionPipeline.from_pretrained(
|
36 |
+
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16"
|
37 |
).to("cuda")
|
38 |
|
39 |
if SAFETY_CHECKER:
|
|
|
58 |
return images, has_nsfw_concepts
|
59 |
|
60 |
|
|
|
61 |
@spaces.GPU(enable_queue=True)
|
62 |
+
def generate_image(
|
63 |
+
prompt,
|
64 |
+
ckpt,
|
65 |
+
num_inference_steps,
|
66 |
+
progress=gr.Progress(track_tqdm=True),
|
67 |
+
mode="sdxl",
|
68 |
+
):
|
69 |
global loaded
|
70 |
+
checkpoint = checkpoints[ckpt][0].format(mode)
|
|
|
|
|
|
|
71 |
guidance_scale = checkpoints[ckpt][2]
|
72 |
+
pipe = pipe_sdxl if mode == "sdxl" else pipe_sd15
|
73 |
|
74 |
+
if loaded != (ckpt + mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
pipe.load_lora_weights(
|
76 |
+
"wangfuyun/PCM_Weights", weight_name=checkpoint, subfolder=mode
|
77 |
)
|
78 |
+
loaded = ckpt + mode
|
79 |
+
|
80 |
+
if ckpt == "LCM-Like LoRA":
|
81 |
+
pipe.scheduler = LCMScheduler()
|
82 |
+
else:
|
83 |
+
pipe.scheduler = TCDScheduler(
|
84 |
+
num_train_timesteps=1000,
|
85 |
+
beta_start=0.00085,
|
86 |
+
beta_end=0.012,
|
87 |
+
beta_schedule="scaled_linear",
|
88 |
+
timestep_spacing="trailing",
|
89 |
+
)
|
90 |
|
91 |
results = pipe(
|
92 |
prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
|
|
101 |
return results.images[0]
|
102 |
|
103 |
|
104 |
+
def update_steps(ckpt):
|
105 |
+
num_inference_steps = checkpoints[ckpt][1]
|
106 |
+
if ckpt == "LCM-Like LoRA":
|
107 |
+
return gr.update(interactive=True, value=num_inference_steps)
|
108 |
+
return gr.update(interactive=False, value=num_inference_steps)
|
109 |
+
|
110 |
|
111 |
css = """
|
112 |
.gradio-container {
|
|
|
114 |
}
|
115 |
"""
|
116 |
with gr.Blocks(css=css) as demo:
|
117 |
+
gr.Markdown(
|
118 |
+
"""
|
119 |
+
# Phased Consistency Model
|
120 |
+
[[paper](https://huggingface.co/papers/2405.18407)] [[arXiv](https://arxiv.org/abs/2405.18407)] [[code](https://github.com/G-U-N/Phased-Consistency-Model)] [[project page](https://g-u-n.github.io/projects/pcm)]
|
121 |
+
"""
|
122 |
)
|
123 |
with gr.Group():
|
124 |
with gr.Row():
|
125 |
+
prompt = gr.Textbox(label="Prompt", scale=8)
|
126 |
ckpt = gr.Dropdown(
|
127 |
label="Select inference steps",
|
128 |
choices=list(checkpoints.keys()),
|
129 |
value="4-Step",
|
|
|
130 |
)
|
131 |
+
steps = gr.Slider(
|
132 |
+
label="Number of Inference Steps",
|
133 |
+
minimum=1,
|
134 |
+
maximum=20,
|
135 |
+
step=1,
|
136 |
+
value=4,
|
137 |
+
interactive=False,
|
138 |
+
)
|
139 |
+
ckpt.change(
|
140 |
+
fn=update_steps,
|
141 |
+
inputs=[ckpt],
|
142 |
+
outputs=[steps],
|
143 |
+
queue=False,
|
144 |
+
show_progress=False,
|
145 |
+
)
|
146 |
|
147 |
+
submit_sdxl = gr.Button("Run on SDXL", scale=1)
|
148 |
+
submit_sd15 = gr.Button("Run on SD15", scale=1)
|
149 |
+
|
150 |
+
img = gr.Image(label="PCM Image")
|
151 |
+
gr.Examples(
|
152 |
+
examples=[
|
153 |
+
[
|
154 |
+
"Echoes of a forgotten song drift across the moonlit sea, where a ghost ship sails, its spectral crew bound to an eternal quest for redemption.",
|
155 |
+
"4-Step",
|
156 |
+
4,
|
157 |
+
],
|
158 |
+
[
|
159 |
+
"Roger rabbit as a real person, photorealistic, cinematic.",
|
160 |
+
"16-Step",
|
161 |
+
16,
|
162 |
+
],
|
163 |
+
[
|
164 |
+
"tanding tall amidst the ruins, a stone golem awakens, vines and flowers sprouting from the crevices in its body.",
|
165 |
+
"LCM-Like LoRA",
|
166 |
+
4,
|
167 |
+
],
|
168 |
+
],
|
169 |
+
inputs=[prompt, ckpt, steps],
|
170 |
+
outputs=[img],
|
171 |
fn=generate_image,
|
172 |
+
cache_examples="lazy",
|
|
|
173 |
)
|
174 |
+
|
175 |
+
gr.on(
|
176 |
fn=generate_image,
|
177 |
+
triggers=[prompt.submit, submit_sdxl.click],
|
178 |
+
inputs=[prompt, ckpt, steps],
|
179 |
+
outputs=[img],
|
180 |
+
)
|
181 |
+
gr.on(
|
182 |
+
fn=lambda *args: generate_image(*args, mode="sd15"),
|
183 |
+
triggers=[submit_sd15.click],
|
184 |
+
inputs=[prompt, ckpt, steps],
|
185 |
+
outputs=[img],
|
186 |
)
|
187 |
|
188 |
+
|
189 |
+
demo.queue(api_open=False).launch(show_api=False)
|