Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
import json | |
from PIL import Image | |
from urllib.parse import quote # Ensure this import is included | |
# Set page configuration with a title and favicon | |
st.set_page_config( | |
page_title="๐โจ๐WordGameAI", | |
page_icon="๐ ", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': "https://huggingface.co/spaces/awacke1/WebDataDownload", | |
'About': "# Midjourney: https://discord.com/channels/@me/997514686608191558" | |
} | |
) | |
PromptPrefix = 'Create a markdown outline and table with appropriate emojis for word game rules defining the method steps of play for topic of ' | |
PromptPrefix2 = 'Create a streamlit python user app. Show full code listing. Create a UI implementing each feature using variables, reusable functions with parameters, and data driven app with python libraries and streamlit components for Javascript and HTML5. Use appropriate emojis for labels to summarize and list parts, function, conditions for topic: ' | |
st.markdown('''### ๐โจ๐ WordGameAI ''') | |
with st.expander("Help / About ๐", expanded=False): | |
st.markdown(''' | |
- ๐ **Unlock Words:** Elevate your vocabulary with AI. Turns words into thrilling experiences. | |
- ๐ **Features:** Creates extensive glossaries & exciting challenges. | |
- ๐งโโ๏ธ **Experience:** Become a word wizard, boost your language skills. | |
- ๐ **Query Use:** Input `?q=Palindrome` or `?query=Anagram` in URL for new challenges. | |
''') | |
# -----------------------------------------------------------------Art Card Sidebar: | |
# Get this from paste into markdown feature | |
#image_url = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/G_GkRD_IT3f14K7gWlbwi.png" | |
image_url2 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/gikaT871Mm8k6wuv4pl_g.png" | |
image_url3 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/gv1xmIiXh1NGTeeV-cYF2.png" | |
image_url4 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/2YsnDyc_nDNW71PPKozdN.png" | |
#image_url5 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/eGii5DvGIuCtWCU08_i-D.png" | |
#image_url6 = "https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/2-KfxcuXRcTFiHf4XlNsX.png" | |
#image_base64 = get_image_as_base64(image_url) | |
#image_base642 = get_image_as_base64(image_url2) | |
#image_base643 = get_image_as_base64(image_url3) | |
#image_base644 = get_image_as_base64(image_url4) | |
#image_base645 = get_image_as_base64(image_url5) | |
#image_base646 = get_image_as_base64(image_url6) | |
#if image_base644 is not None: | |
# with st.sidebar: | |
# st.markdown("""### Word Game AI""") | |
#st.markdown(f"![image](data:image/png;base64,{image_base64})") | |
# st.markdown(f"![image](data:image/png;base64,{image_base642})") | |
# st.markdown(f"![image](data:image/png;base64,{image_base643})") | |
# st.markdown(f"![image](data:image/png;base64,{image_base644})") | |
#st.markdown(f"![image](data:image/png;base64,{image_base645})") | |
#st.markdown(f"![image](data:image/png;base64,{image_base646})") | |
#download_link = create_download_link("downloaded_image.png", image_base64) | |
#st.markdown(download_link, unsafe_allow_html=True) | |
#else: | |
# st.sidebar.write("Failed to load the image.") | |
# ------------------------------------------------------------- Art Card Sidebar | |
# ---- Art Card Sidebar with random selection of image: | |
def get_image_as_base64(url): | |
response = requests.get(url) | |
if response.status_code == 200: | |
# Convert the image to base64 | |
return base64.b64encode(response.content).decode("utf-8") | |
else: | |
return None | |
def create_download_link(filename, base64_str): | |
href = f'<a href="data:file/png;base64,{base64_str}" download="{filename}">Download Image</a>' | |
return href | |
# List of image URLs | |
image_urls = [ | |
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/gikaT871Mm8k6wuv4pl_g.png", | |
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/gv1xmIiXh1NGTeeV-cYF2.png", | |
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/2YsnDyc_nDNW71PPKozdN.png", | |
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/G_GkRD_IT3f14K7gWlbwi.png", | |
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/eGii5DvGIuCtWCU08_i-D.png", | |
"https://cdn-uploads.huggingface.co/production/uploads/620630b603825909dcbeba35/2-KfxcuXRcTFiHf4XlNsX.png" | |
] | |
# Select a random URL from the list | |
selected_image_url = random.choice(image_urls) | |
# Get the base64 encoded string of the selected image | |
selected_image_base64 = get_image_as_base64(selected_image_url) | |
if selected_image_base64 is not None: | |
with st.sidebar: | |
st.markdown("""### Word Game AI""") | |
# Display the image | |
st.markdown(f"![image](data:image/png;base64,{selected_image_base64})") | |
# Create and display the download link | |
download_link = create_download_link("downloaded_image.png", selected_image_base64) | |
st.markdown(download_link, unsafe_allow_html=True) | |
else: | |
st.sidebar.write("Failed to load the image.") | |
# ---- Art Card Sidebar with random selection of image. | |
# Ensure the directory for storing scores exists | |
score_dir = "scores" | |
os.makedirs(score_dir, exist_ok=True) | |
# Function to generate a unique key for each button, including an emoji | |
def generate_key(label, header, idx): | |
return f"{header}_{label}_{idx}_key" | |
# Function to increment and save score | |
def update_score(key, increment=1): | |
score_file = os.path.join(score_dir, f"{key}.json") | |
if os.path.exists(score_file): | |
with open(score_file, "r") as file: | |
score_data = json.load(file) | |
else: | |
score_data = {"clicks": 0, "score": 0} | |
score_data["clicks"] += 1 | |
score_data["score"] += increment | |
with open(score_file, "w") as file: | |
json.dump(score_data, file) | |
return score_data["score"] | |
# Function to load score | |
def load_score(key): | |
score_file = os.path.join(score_dir, f"{key}.json") | |
if os.path.exists(score_file): | |
with open(score_file, "r") as file: | |
score_data = json.load(file) | |
return score_data["score"] | |
return 0 | |
roleplaying_glossary = { | |
"๐จโ๐ฉโ๐งโ๐ฆ Top Family Games": { | |
"Big Easy Busket": ["New Orleans culture", "Band formation", "Song performance", "Location strategy", "Diversity celebration", "3-day gameplay"], | |
"Bonanza": [ | |
"Bean planting and harvesting", | |
"Bid and trade interaction", | |
"Quirky card artwork", | |
"Hand management", | |
"Negotiation skills", | |
"Set collecting", | |
"Fun with large groups", | |
"Laughter and enjoyment" | |
], | |
"Love Letter": [ | |
"Valentine's Day theme", | |
"Simple gameplay mechanics", | |
"Card effects and strategy", | |
"Deduction to find love letter's sender", | |
"Take that elements", | |
"Fun for celebrating love", | |
"Engagement and elimination", | |
"Quick and engaging play" | |
], | |
"Japan to Japan": [ | |
"Global Tourism Resilience Day theme", | |
"Travel and itinerary planning mechanics", | |
"1 to 5 player game", | |
"Game set in 2024 by AEG", | |
"13 Rounds of strategic activity card placement", | |
"Illustrations by Japan-based artists", | |
"Efficiency in trip planning emphasized", | |
"Resilience through thoughtful touring", | |
"Inspired by real travel planning experiences" | |
], | |
"Votes for Women": [ | |
"World Social Justice Day theme", | |
"Card-driven game exploring American women's suffrage movement", | |
"1 to 4 player game", | |
"Released in 2022 by Fort Circle Games", | |
"Covers 1848 to 1920 suffrage movement", | |
"Includes competitive, cooperative, and solitary play modes", | |
"Engages players in the ratification or rejection of the 19th Amendment", | |
"Educational content on women's rights history", | |
"Mechanics include area majority, dice rolling, cooperative play, and campaign-driven gameplay" | |
], | |
}, | |
"๐ Traditional Word Games": { | |
"Scrabble": ["Tile placement", "Word formation", "Point scoring"], | |
"Boggle": ["Letter grid", "Timed word search", "Word length points"], | |
"Crossword Puzzles": ["Clue solving", "Word filling", "Thematic puzzles"], | |
"Banagrams": ["Tile shuffling", "Personal anagram puzzles", "Speed challenge"], | |
"Hangman": ["Word guessing", "Letter guessing", "Limited attempts"], | |
}, | |
"๐ก Digital Word Games": { | |
"Words With Friends": ["Digital Scrabble-like", "Online multiplayer", "Social interaction"], | |
"Wordle": ["Daily word guessing", "Limited tries", "Shareable results"], | |
"Letterpress": ["Competitive word search", "Territory control", "Strategic letter usage"], | |
"Alphabear": ["Word formation", "Cute characters", "Puzzle strategy"], | |
}, | |
"๐ฎ Game Design and Mechanics": { | |
"Gameplay Dynamics": ["Word discovery", "Strategic placement", "Time pressure"], | |
"Player Engagement": ["Daily challenges", "Leaderboards", "Community puzzles"], | |
"Learning and Development": ["Vocabulary building", "Spelling practice", "Cognitive skills"], | |
}, | |
"๐ Online Platforms & Tools": { | |
"Multiplayer Platforms": ["Real-time competition", "Asynchronous play", "Global matchmaking"], | |
"Educational Tools": ["Learning modes", "Progress tracking", "Skill levels"], | |
"Community Features": ["Forums", "Tips and tricks sharing", "Tournament organization"], | |
}, | |
"๐๏ธ Competitive Scene": { | |
"Scrabble Tournaments": ["Official rules", "National and international", "Professional rankings"], | |
"Crossword Competitions": ["Speed solving", "Puzzle variety", "Prizes and recognition"], | |
"Wordle Challenges": ["Streaks", "Perfect scores", "Community leaderboards"], | |
}, | |
"๐ Lore & Background": { | |
"History of Word Games": ["Evolution over time", "Cultural significance", "Famous games"], | |
"Iconic Word Game Creators": ["Creators and designers", "Inspirational stories", "Game development"], | |
"Word Games in Literature": ["Literary puzzles", "Wordplay in writing", "Famous examples"], | |
}, | |
"๐ ๏ธ Resources & Development": { | |
"Game Creation Tools": ["Word game generators", "Puzzle design software", "Community mods"], | |
"Educational Resources": ["Vocabulary lists", "Word game strategies", "Learning methodologies"], | |
"Digital Platforms": ["App development", "Online game hosting", "Social media integration"], | |
}, | |
} | |
def search_glossary(query): | |
for category, terms in roleplaying_glossary.items(): | |
if query.lower() in (term.lower() for term in terms): | |
st.markdown(f"#### {category}") | |
st.write(f"- {query}") | |
all="" | |
query2 = PromptPrefix + query # Add prompt preface for method step task behavior | |
# st.write('## ' + query2) | |
st.write('## ๐ Running with GPT.') # ------------------------------------------------------------------------------------------------- | |
response = chat_with_model(query2) | |
filename = generate_filename(query2 + ' --- ' + response, "md") | |
create_file(filename, query, response, should_save) | |
query3 = PromptPrefix2 + query + ' creating streamlit functions that implement outline of method steps below: ' + response # Add prompt preface for coding task behavior | |
# st.write('## ' + query3) | |
st.write('## ๐ Coding with GPT.') # ------------------------------------------------------------------------------------------------- | |
response2 = chat_with_model(query3) | |
filename_txt = generate_filename(query + ' --- ' + response2, "py") | |
create_file(filename_txt, query, response2, should_save) | |
all = '# Query: ' + query + '# Response: ' + response + '# Response2: ' + response2 | |
filename_txt2 = generate_filename(query + ' --- ' + all, "md") | |
create_file(filename_txt2, query, all, should_save) | |
SpeechSynthesis(all) | |
return all | |
# Function to display the glossary in a structured format | |
def display_glossary(glossary, area): | |
if area in glossary: | |
st.subheader(f"๐ Glossary for {area}") | |
for game, terms in glossary[area].items(): | |
st.markdown(f"### {game}") | |
for idx, term in enumerate(terms, start=1): | |
st.write(f"{idx}. {term}") | |
# Function to display the entire glossary in a grid format with links | |
def display_glossary_grid(roleplaying_glossary): | |
search_urls = { | |
"๐": lambda k: f"https://en.wikipedia.org/wiki/{quote(k)}", | |
"๐": lambda k: f"https://www.google.com/search?q={quote(k)}", | |
"โถ๏ธ": lambda k: f"https://www.youtube.com/results?search_query={quote(k)}", | |
"๐": lambda k: f"https://www.bing.com/search?q={quote(k)}", | |
"๐ฒ": lambda k: f"https://huggingface.co/spaces/awacke1/MixableWordGameAI?q={quote(k)}", # this url plus query! | |
} | |
for category, details in roleplaying_glossary.items(): | |
st.write(f"### {category}") | |
cols = st.columns(len(details)) # Create dynamic columns based on the number of games | |
for idx, (game, terms) in enumerate(details.items()): | |
with cols[idx]: | |
st.markdown(f"#### {game}") | |
for term in terms: | |
links_md = ' '.join([f"[{emoji}]({url(term)})" for emoji, url in search_urls.items()]) | |
st.markdown(f"{term} {links_md}", unsafe_allow_html=True) | |
game_emojis = { | |
"Dungeons and Dragons": "๐", | |
"Call of Cthulhu": "๐", | |
"GURPS": "๐ฒ", | |
"Pathfinder": "๐บ๏ธ", | |
"Kindred of the East": "๐ ", | |
"Changeling": "๐", | |
} | |
topic_emojis = { | |
"Core Rulebooks": "๐", | |
"Maps & Settings": "๐บ๏ธ", | |
"Game Mechanics & Tools": "โ๏ธ", | |
"Monsters & Adversaries": "๐น", | |
"Campaigns & Adventures": "๐", | |
"Creatives & Assets": "๐จ", | |
"Game Master Resources": "๐ ๏ธ", | |
"Lore & Background": "๐", | |
"Character Development": "๐ง", | |
"Homebrew Content": "๐ง", | |
"General Topics": "๐", | |
} | |
# Adjusted display_buttons_with_scores function | |
def display_buttons_with_scores(): | |
for category, games in roleplaying_glossary.items(): | |
category_emoji = topic_emojis.get(category, "๐") # Default to search icon if no match | |
st.markdown(f"## {category_emoji} {category}") | |
for game, terms in games.items(): | |
game_emoji = game_emojis.get(game, "๐ฎ") # Default to generic game controller if no match | |
for term in terms: | |
key = f"{category}_{game}_{term}".replace(' ', '_').lower() | |
score = load_score(key) | |
if st.button(f"{game_emoji} {term} {score}", key=key): | |
update_score(key) | |
# Create a dynamic query incorporating emojis and formatting for clarity | |
query_prefix = f"{category_emoji} {game_emoji} **{game} - {category}:**" | |
# ---------------------------------------------------------------------------------------------- | |
#query_body = f"Create a detailed outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements." | |
query_body = f"Create a streamlit python app.py that produces a detailed markdown outline and emoji laden user interface with labels with the entity name and emojis in all labels with a set of streamlit UI components with drop down lists and dataframes and buttons with expander and sidebar for the app to run the data as default values mostly in text boxes. Feature a 3 point outline sith 3 subpoints each where each line has about six words describing this and also contain appropriate emoji for creating sumamry of all aspeccts of this topic. an outline for **{term}** with subpoints highlighting key aspects, using emojis for visual engagement. Include step-by-step rules and boldface important entities and ruleset elements." | |
response = search_glossary(query_prefix + query_body) | |
def fetch_wikipedia_summary(keyword): | |
# Placeholder function for fetching Wikipedia summaries | |
# In a real app, you might use requests to fetch from the Wikipedia API | |
return f"Summary for {keyword}. For more information, visit Wikipedia." | |
def create_search_url_youtube(keyword): | |
base_url = "https://www.youtube.com/results?search_query=" | |
return base_url + keyword.replace(' ', '+') | |
def create_search_url_bing(keyword): | |
base_url = "https://www.bing.com/search?q=" | |
return base_url + keyword.replace(' ', '+') | |
def create_search_url_wikipedia(keyword): | |
base_url = "https://www.wikipedia.org/search-redirect.php?family=wikipedia&language=en&search=" | |
return base_url + keyword.replace(' ', '+') | |
def create_search_url_google(keyword): | |
base_url = "https://www.google.com/search?q=" | |
return base_url + keyword.replace(' ', '+') | |
def create_search_url_ai(keyword): | |
base_url = "https://huggingface.co/spaces/awacke1/MixableWordGameAI?q=" | |
return base_url + keyword.replace(' ', '+') | |
def display_images_and_wikipedia_summaries(): | |
image_files = [f for f in os.listdir('.') if f.endswith('.png')] | |
if not image_files: | |
st.write("No PNG images found in the current directory.") | |
return | |
for image_file in image_files: | |
image = Image.open(image_file) | |
st.image(image, caption=image_file, use_column_width=True) | |
keyword = image_file.split('.')[0] # Assumes keyword is the file name without extension | |
# Display Wikipedia and Google search links | |
wikipedia_url = create_search_url_wikipedia(keyword) | |
google_url = create_search_url_google(keyword) | |
youtube_url = create_search_url_youtube(keyword) | |
bing_url = create_search_url_bing(keyword) | |
ai_url = create_search_url_ai(keyword) | |
links_md = f""" | |
[Wikipedia]({wikipedia_url}) | | |
[Google]({google_url}) | | |
[YouTube]({youtube_url}) | | |
[Bing]({bing_url}) | | |
[AI]({ai_url}) | |
""" | |
st.markdown(links_md) | |
def get_all_query_params(key): | |
return st.query_params().get(key, []) | |
def clear_query_params(): | |
st.query_params() | |
# Function to display content or image based on a query | |
def display_content_or_image(query): | |
# Check if the query matches any glossary term | |
for category, terms in transhuman_glossary.items(): | |
for term in terms: | |
if query.lower() in term.lower(): | |
st.subheader(f"Found in {category}:") | |
st.write(term) | |
return True # Return after finding and displaying the first match | |
# Check for an image match in a predefined directory (adjust path as needed) | |
image_dir = "images" # Example directory where images are stored | |
image_path = f"{image_dir}/{query}.png" # Construct image path with query | |
if os.path.exists(image_path): | |
st.image(image_path, caption=f"Image for {query}") | |
return True | |
# If no content or image is found | |
st.warning("No matching content or image found.") | |
return False | |
# Imports | |
import base64 | |
import glob | |
import json | |
import math | |
import openai | |
import os | |
import pytz | |
import re | |
import requests | |
import streamlit as st | |
import textract | |
import time | |
import zipfile | |
import huggingface_hub | |
import dotenv | |
from audio_recorder_streamlit import audio_recorder | |
from bs4 import BeautifulSoup | |
from collections import deque | |
from datetime import datetime | |
from dotenv import load_dotenv | |
from huggingface_hub import InferenceClient | |
from io import BytesIO | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.memory import ConversationBufferMemory | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from openai import ChatCompletion | |
from PyPDF2 import PdfReader | |
from templates import bot_template, css, user_template | |
from xml.etree import ElementTree as ET | |
import streamlit.components.v1 as components # Import Streamlit Components for HTML5 | |
def add_Med_Licensing_Exam_Dataset(): | |
import streamlit as st | |
from datasets import load_dataset | |
dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split | |
st.title("USMLE Step 1 Dataset Viewer") | |
if len(dataset) == 0: | |
st.write("๐ข The dataset is empty.") | |
else: | |
st.write(""" | |
๐ Use the search box to filter questions or use the grid to scroll through the dataset. | |
""") | |
# ๐ฉโ๐ฌ Search Box | |
search_term = st.text_input("Search for a specific question:", "") | |
# ๐ Pagination | |
records_per_page = 100 | |
num_records = len(dataset) | |
num_pages = max(int(num_records / records_per_page), 1) | |
# Skip generating the slider if num_pages is 1 (i.e., all records fit in one page) | |
if num_pages > 1: | |
page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1))) | |
else: | |
page_number = 1 # Only one page | |
# ๐ Display Data | |
start_idx = (page_number - 1) * records_per_page | |
end_idx = start_idx + records_per_page | |
# ๐งช Apply the Search Filter | |
filtered_data = [] | |
for record in dataset[start_idx:end_idx]: | |
if isinstance(record, dict) and 'text' in record and 'id' in record: | |
if search_term: | |
if search_term.lower() in record['text'].lower(): | |
st.markdown(record) | |
filtered_data.append(record) | |
else: | |
filtered_data.append(record) | |
# ๐ Render the Grid | |
for record in filtered_data: | |
st.write(f"## Question ID: {record['id']}") | |
st.write(f"### Question:") | |
st.write(f"{record['text']}") | |
st.write(f"### Answer:") | |
st.write(f"{record['answer']}") | |
st.write("---") | |
st.write(f"๐ Total Records: {num_records} | ๐ Displaying {start_idx+1} to {min(end_idx, num_records)}") | |
# 1. Constants and Top Level UI Variables | |
# My Inference API Copy | |
API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama | |
# Meta's Original - Chat HF Free Version: | |
#API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf" | |
API_KEY = os.getenv('API_KEY') | |
MODEL1="meta-llama/Llama-2-7b-chat-hf" | |
MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf" | |
HF_KEY = os.getenv('HF_KEY') | |
headers = { | |
"Authorization": f"Bearer {HF_KEY}", | |
"Content-Type": "application/json" | |
} | |
key = os.getenv('OPENAI_API_KEY') | |
prompt = f"Write instructions to teach discharge planning along with guidelines and patient education. List entities, features and relationships to CCDA and FHIR objects in boldface." | |
should_save = st.sidebar.checkbox("๐พ Save", value=True, help="Save your session data.") | |
# 2. Prompt label button demo for LLM | |
def add_witty_humor_buttons(): | |
with st.expander("Wit and Humor ๐คฃ", expanded=True): | |
# Tip about the Dromedary family | |
st.markdown("๐ฌ **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.") | |
# Define button descriptions | |
descriptions = { | |
"Generate Limericks ๐": "Write ten random adult limericks based on quotes that are tweet length and make you laugh ๐ญ", | |
"Wise Quotes ๐ง": "Generate ten wise quotes that are tweet length ๐ฆ", | |
"Funny Rhymes ๐ค": "Create ten funny rhymes that are tweet length ๐ถ", | |
"Medical Jokes ๐": "Create ten medical jokes that are tweet length ๐ฅ", | |
"Minnesota Humor โ๏ธ": "Create ten jokes about Minnesota that are tweet length ๐จ๏ธ", | |
"Top Funny Stories ๐": "Create ten funny stories that are tweet length ๐", | |
"More Funny Rhymes ๐๏ธ": "Create ten more funny rhymes that are tweet length ๐ต" | |
} | |
# Create columns | |
col1, col2, col3 = st.columns([1, 1, 1], gap="small") | |
# Add buttons to columns | |
if col1.button("Wise Limericks ๐"): | |
StreamLLMChatResponse(descriptions["Generate Limericks ๐"]) | |
if col2.button("Wise Quotes ๐ง"): | |
StreamLLMChatResponse(descriptions["Wise Quotes ๐ง"]) | |
#if col3.button("Funny Rhymes ๐ค"): | |
# StreamLLMChatResponse(descriptions["Funny Rhymes ๐ค"]) | |
col4, col5, col6 = st.columns([1, 1, 1], gap="small") | |
if col4.button("Top Ten Funniest Clean Jokes ๐"): | |
StreamLLMChatResponse(descriptions["Top Ten Funniest Clean Jokes ๐"]) | |
if col5.button("Minnesota Humor โ๏ธ"): | |
StreamLLMChatResponse(descriptions["Minnesota Humor โ๏ธ"]) | |
if col6.button("Origins of Medical Science True Stories"): | |
StreamLLMChatResponse(descriptions["Origins of Medical Science True Stories"]) | |
col7 = st.columns(1, gap="small") | |
if col7[0].button("Top Ten Best Write a streamlit python program prompts to build AI programs. ๐๏ธ"): | |
StreamLLMChatResponse(descriptions["Top Ten Best Write a streamlit python program prompts to build AI programs. ๐๏ธ"]) | |
def SpeechSynthesis(result): | |
documentHTML5=''' | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>Read It Aloud</title> | |
<script type="text/javascript"> | |
function readAloud() { | |
const text = document.getElementById("textArea").value; | |
const speech = new SpeechSynthesisUtterance(text); | |
window.speechSynthesis.speak(speech); | |
} | |
</script> | |
</head> | |
<body> | |
<h1>๐ Read It Aloud</h1> | |
<textarea id="textArea" rows="10" cols="80"> | |
''' | |
documentHTML5 = documentHTML5 + result | |
documentHTML5 = documentHTML5 + ''' | |
</textarea> | |
<br> | |
<button onclick="readAloud()">๐ Read Aloud</button> | |
</body> | |
</html> | |
''' | |
components.html(documentHTML5, width=1280, height=300) | |
#return result | |
# 3. Stream Llama Response | |
# @st.cache_resource | |
def StreamLLMChatResponse(prompt): | |
try: | |
endpoint_url = API_URL | |
hf_token = API_KEY | |
st.write('Running client ' + endpoint_url) | |
client = InferenceClient(endpoint_url, token=hf_token) | |
gen_kwargs = dict( | |
max_new_tokens=512, | |
top_k=30, | |
top_p=0.9, | |
temperature=0.2, | |
repetition_penalty=1.02, | |
stop_sequences=["\nUser:", "<|endoftext|>", "</s>"], | |
) | |
stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs) | |
report=[] | |
res_box = st.empty() | |
collected_chunks=[] | |
collected_messages=[] | |
allresults='' | |
for r in stream: | |
if r.token.special: | |
continue | |
if r.token.text in gen_kwargs["stop_sequences"]: | |
break | |
collected_chunks.append(r.token.text) | |
chunk_message = r.token.text | |
collected_messages.append(chunk_message) | |
try: | |
report.append(r.token.text) | |
if len(r.token.text) > 0: | |
result="".join(report).strip() | |
res_box.markdown(f'*{result}*') | |
except: | |
st.write('Stream llm issue') | |
SpeechSynthesis(result) | |
return result | |
except: | |
st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).') | |
# 4. Run query with payload | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
st.markdown(response.json()) | |
return response.json() | |
def get_output(prompt): | |
return query({"inputs": prompt}) | |
# 5. Auto name generated output files from time and content | |
def generate_filename(prompt, file_type): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:255] # 255 is linux max, 260 is windows max | |
#safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45] | |
return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
# 6. Speech transcription via OpenAI service | |
def transcribe_audio(openai_key, file_path, model): | |
openai.api_key = openai_key | |
OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions" | |
headers = { | |
"Authorization": f"Bearer {openai_key}", | |
} | |
with open(file_path, 'rb') as f: | |
data = {'file': f} | |
st.write('STT transcript ' + OPENAI_API_URL) | |
response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model}) | |
if response.status_code == 200: | |
st.write(response.json()) | |
chatResponse = chat_with_model(response.json().get('text'), '') # ************************************* | |
transcript = response.json().get('text') | |
filename = generate_filename(transcript, 'txt') | |
response = chatResponse | |
user_prompt = transcript | |
create_file(filename, user_prompt, response, should_save) | |
return transcript | |
else: | |
st.write(response.json()) | |
st.error("Error in API call.") | |
return None | |
# 7. Auto stop on silence audio control for recording WAV files | |
def save_and_play_audio(audio_recorder): | |
audio_bytes = audio_recorder(key='audio_recorder') | |
if audio_bytes: | |
filename = generate_filename("Recording", "wav") | |
with open(filename, 'wb') as f: | |
f.write(audio_bytes) | |
st.audio(audio_bytes, format="audio/wav") | |
return filename | |
return None | |
# 8. File creator that interprets type and creates output file for text, markdown and code | |
def create_file(filename, prompt, response, should_save=True): | |
if not should_save: | |
return | |
base_filename, ext = os.path.splitext(filename) | |
if ext in ['.txt', '.htm', '.md']: | |
with open(f"{base_filename}.md", 'w') as file: | |
try: | |
content = prompt.strip() + '\r\n' + response | |
file.write(content) | |
except: | |
st.write('.') | |
#has_python_code = re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response) | |
#has_python_code = bool(re.search(r"```python([\s\S]*?)```", prompt.strip() + '\r\n' + response)) | |
#if has_python_code: | |
# python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip() | |
# with open(f"{base_filename}-Code.py", 'w') as file: | |
# file.write(python_code) | |
# with open(f"{base_filename}.md", 'w') as file: | |
# content = prompt.strip() + '\r\n' + response | |
# file.write(content) | |
def truncate_document(document, length): | |
return document[:length] | |
def divide_document(document, max_length): | |
return [document[i:i+max_length] for i in range(0, len(document), max_length)] | |
# 9. Sidebar with UI controls to review and re-run prompts and continue responses | |
def get_table_download_link(file_path): | |
with open(file_path, 'r') as file: | |
data = file.read() | |
b64 = base64.b64encode(data.encode()).decode() | |
file_name = os.path.basename(file_path) | |
ext = os.path.splitext(file_name)[1] # get the file extension | |
if ext == '.txt': | |
mime_type = 'text/plain' | |
elif ext == '.py': | |
mime_type = 'text/plain' | |
elif ext == '.xlsx': | |
mime_type = 'text/plain' | |
elif ext == '.csv': | |
mime_type = 'text/plain' | |
elif ext == '.htm': | |
mime_type = 'text/html' | |
elif ext == '.md': | |
mime_type = 'text/markdown' | |
elif ext == '.wav': | |
mime_type = 'audio/wav' | |
else: | |
mime_type = 'application/octet-stream' # general binary data type | |
href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>' | |
return href | |
def CompressXML(xml_text): | |
root = ET.fromstring(xml_text) | |
for elem in list(root.iter()): | |
if isinstance(elem.tag, str) and 'Comment' in elem.tag: | |
elem.parent.remove(elem) | |
return ET.tostring(root, encoding='unicode', method="xml") | |
# 10. Read in and provide UI for past files | |
def read_file_content(file,max_length): | |
if file.type == "application/json": | |
content = json.load(file) | |
return str(content) | |
elif file.type == "text/html" or file.type == "text/htm": | |
content = BeautifulSoup(file, "html.parser") | |
return content.text | |
elif file.type == "application/xml" or file.type == "text/xml": | |
tree = ET.parse(file) | |
root = tree.getroot() | |
xml = CompressXML(ET.tostring(root, encoding='unicode')) | |
return xml | |
elif file.type == "text/markdown" or file.type == "text/md": | |
md = mistune.create_markdown() | |
content = md(file.read().decode()) | |
return content | |
elif file.type == "text/plain": | |
return file.getvalue().decode() | |
else: | |
return "" | |
# 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS | |
def chat_with_model(prompt, document_section='', model_choice='gpt-3.5-turbo'): | |
model = model_choice | |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
conversation.append({'role': 'user', 'content': prompt}) | |
if len(document_section)>0: | |
conversation.append({'role': 'assistant', 'content': document_section}) | |
start_time = time.time() | |
report = [] | |
res_box = st.empty() | |
collected_chunks = [] | |
collected_messages = [] | |
st.write('LLM stream ' + 'gpt-3.5-turbo') | |
for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True): | |
collected_chunks.append(chunk) | |
chunk_message = chunk['choices'][0]['delta'] | |
collected_messages.append(chunk_message) | |
content=chunk["choices"][0].get("delta",{}).get("content") | |
try: | |
report.append(content) | |
if len(content) > 0: | |
result = "".join(report).strip() | |
res_box.markdown(f'*{result}*') | |
except: | |
st.write(' ') | |
full_reply_content = ''.join([m.get('content', '') for m in collected_messages]) | |
st.write("Elapsed time:") | |
st.write(time.time() - start_time) | |
return full_reply_content | |
# 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain | |
def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'): | |
conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}] | |
conversation.append({'role': 'user', 'content': prompt}) | |
if len(file_content)>0: | |
conversation.append({'role': 'assistant', 'content': file_content}) | |
response = openai.ChatCompletion.create(model=model_choice, messages=conversation) | |
return response['choices'][0]['message']['content'] | |
def extract_mime_type(file): | |
if isinstance(file, str): | |
pattern = r"type='(.*?)'" | |
match = re.search(pattern, file) | |
if match: | |
return match.group(1) | |
else: | |
raise ValueError(f"Unable to extract MIME type from {file}") | |
elif isinstance(file, streamlit.UploadedFile): | |
return file.type | |
else: | |
raise TypeError("Input should be a string or a streamlit.UploadedFile object") | |
def extract_file_extension(file): | |
# get the file name directly from the UploadedFile object | |
file_name = file.name | |
pattern = r".*?\.(.*?)$" | |
match = re.search(pattern, file_name) | |
if match: | |
return match.group(1) | |
else: | |
raise ValueError(f"Unable to extract file extension from {file_name}") | |
# Normalize input as text from PDF and other formats | |
def pdf2txt(docs): | |
text = "" | |
for file in docs: | |
file_extension = extract_file_extension(file) | |
st.write(f"File type extension: {file_extension}") | |
if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']: | |
text += file.getvalue().decode('utf-8') | |
elif file_extension.lower() == 'pdf': | |
from PyPDF2 import PdfReader | |
pdf = PdfReader(BytesIO(file.getvalue())) | |
for page in range(len(pdf.pages)): | |
text += pdf.pages[page].extract_text() # new PyPDF2 syntax | |
return text | |
def txt2chunks(text): | |
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len) | |
return text_splitter.split_text(text) | |
# Vector Store using FAISS | |
def vector_store(text_chunks): | |
embeddings = OpenAIEmbeddings(openai_api_key=key) | |
return FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
# Memory and Retrieval chains | |
def get_chain(vectorstore): | |
llm = ChatOpenAI() | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory) | |
def process_user_input(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
template = user_template if i % 2 == 0 else bot_template | |
st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
filename = generate_filename(user_question, 'txt') | |
response = message.content | |
user_prompt = user_question | |
create_file(filename, user_prompt, response, should_save) | |
def divide_prompt(prompt, max_length): | |
words = prompt.split() | |
chunks = [] | |
current_chunk = [] | |
current_length = 0 | |
for word in words: | |
if len(word) + current_length <= max_length: | |
current_length += len(word) + 1 | |
current_chunk.append(word) | |
else: | |
chunks.append(' '.join(current_chunk)) | |
current_chunk = [word] | |
current_length = len(word) | |
chunks.append(' '.join(current_chunk)) | |
return chunks | |
# 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it | |
def create_zip_of_files(files): | |
zip_name = "all_files.zip" | |
with zipfile.ZipFile(zip_name, 'w') as zipf: | |
for file in files: | |
zipf.write(file) | |
return zip_name | |
def get_zip_download_link(zip_file): | |
with open(zip_file, 'rb') as f: | |
data = f.read() | |
b64 = base64.b64encode(data).decode() | |
href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>' | |
return href | |
# 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10 | |
# My Inference Endpoint | |
API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud' | |
# Original | |
API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en" | |
MODEL2 = "openai/whisper-small.en" | |
MODEL2_URL = "https://huggingface.co/openai/whisper-small.en" | |
#headers = { | |
# "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", | |
# "Content-Type": "audio/wav" | |
#} | |
# HF_KEY = os.getenv('HF_KEY') | |
HF_KEY = st.secrets['HF_KEY'] | |
headers = { | |
"Authorization": f"Bearer {HF_KEY}", | |
"Content-Type": "audio/wav" | |
} | |
#@st.cache_resource | |
def query(filename): | |
with open(filename, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL_IE, headers=headers, data=data) | |
return response.json() | |
def generate_filename(prompt, file_type): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
# 15. Audio recorder to Wav file | |
def save_and_play_audio(audio_recorder): | |
audio_bytes = audio_recorder() | |
if audio_bytes: | |
filename = generate_filename("Recording", "wav") | |
with open(filename, 'wb') as f: | |
f.write(audio_bytes) | |
st.audio(audio_bytes, format="audio/wav") | |
return filename | |
# 16. Speech transcription to file output | |
def transcribe_audio(filename): | |
output = query(filename) | |
return output | |
def whisper_main(): | |
#st.title("Speech to Text") | |
#st.write("Record your speech and get the text.") | |
# Audio, transcribe, GPT: | |
filename = save_and_play_audio(audio_recorder) | |
if filename is not None: | |
transcription = transcribe_audio(filename) | |
try: | |
transcript = transcription['text'] | |
st.write(transcript) | |
except: | |
transcript='' | |
st.write(transcript) | |
# Whisper to GPT: New!! --------------------------------------------------------------------- | |
st.write('Reasoning with your inputs with GPT..') | |
response = chat_with_model(transcript) | |
st.write('Response:') | |
st.write(response) | |
filename = generate_filename(response, "txt") | |
create_file(filename, transcript, response, should_save) | |
# Whisper to GPT: New!! --------------------------------------------------------------------- | |
# Whisper to Llama: | |
response = StreamLLMChatResponse(transcript) | |
filename_txt = generate_filename(transcript, "md") | |
create_file(filename_txt, transcript, response, should_save) | |
filename_wav = filename_txt.replace('.txt', '.wav') | |
import shutil | |
try: | |
if os.path.exists(filename): | |
shutil.copyfile(filename, filename_wav) | |
except: | |
st.write('.') | |
if os.path.exists(filename): | |
os.remove(filename) | |
#st.experimental_rerun() | |
#except: | |
# st.write('Starting Whisper Model on GPU. Please retry in 30 seconds.') | |
# Sample function to demonstrate a response, replace with your own logic | |
def StreamMedChatResponse(topic): | |
st.write(f"Showing resources or questions related to: {topic}") | |
def add_medical_exam_buttons(): | |
# Medical exam terminology descriptions | |
descriptions = { | |
"White Blood Cells ๐": "3 Q&A with emojis about types, facts, function, inputs and outputs of white blood cells ๐ฅ", | |
"CT Imaging๐ฆ ": "3 Q&A with emojis on CT Imaging post surgery, how to, what to look for ๐", | |
"Hematoma ๐": "3 Q&A with emojis about hematoma and infection care and study including bacteria cultures and tests or labs๐ช", | |
"Post Surgery Wound Care ๐": "3 Q&A with emojis on wound care, and good bedside manner ๐ฉธ", | |
"Healing and humor ๐": "3 Q&A with emojis on stories and humor about healing and caregiving ๐", | |
"Psychology of bedside manner ๐งฌ": "3 Q&A with emojis on bedside manner and how to make patients feel at ease๐ ", | |
"CT scan ๐": "3 Q&A with analysis on infection using CT scan and packing for skin, cellulitus and fascia ๐ฉบ" | |
} | |
# Expander for medical topics | |
with st.expander("Medical Licensing Exam Topics ๐", expanded=False): | |
st.markdown("๐ฉบ **Important**: Variety of topics for medical licensing exams.") | |
# Create buttons for each description with unique keys | |
for idx, (label, content) in enumerate(descriptions.items()): | |
button_key = f"button_{idx}" | |
if st.button(label, key=button_key): | |
st.write(f"Running {label}") | |
input='Create markdown outline for definition of topic ' + label + ' also short quiz with appropriate emojis and definitions for: ' + content | |
response=StreamLLMChatResponse(input) | |
filename = generate_filename(response, 'txt') | |
create_file(filename, input, response, should_save) | |
# 17. Main | |
def main(): | |
prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each." | |
# Add Wit and Humor buttons | |
# add_witty_humor_buttons() | |
# add_medical_exam_buttons() | |
with st.expander("Prompts ๐", expanded=False): | |
example_input = st.text_input("Enter your prompt text for Llama:", value=prompt, help="Enter text to get a response from DromeLlama.") | |
if st.button("Run Prompt With Llama model", help="Click to run the prompt."): | |
try: | |
response=StreamLLMChatResponse(example_input) | |
create_file(filename, example_input, response, should_save) | |
except: | |
st.write('Llama model is asleep. Starting now on A10 GPU. Please wait one minute then retry. KEDA triggered.') | |
openai.api_key = os.getenv('OPENAI_API_KEY') | |
if openai.api_key == None: openai.api_key = st.secrets['OPENAI_API_KEY'] | |
menu = ["txt", "htm", "xlsx", "csv", "md", "py"] | |
choice = st.sidebar.selectbox("Output File Type:", menu) | |
model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301')) | |
user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100) | |
collength, colupload = st.columns([2,3]) # adjust the ratio as needed | |
with collength: | |
max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000) | |
with colupload: | |
uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"]) | |
document_sections = deque() | |
document_responses = {} | |
if uploaded_file is not None: | |
file_content = read_file_content(uploaded_file, max_length) | |
document_sections.extend(divide_document(file_content, max_length)) | |
if len(document_sections) > 0: | |
if st.button("๐๏ธ View Upload"): | |
st.markdown("**Sections of the uploaded file:**") | |
for i, section in enumerate(list(document_sections)): | |
st.markdown(f"**Section {i+1}**\n{section}") | |
st.markdown("**Chat with the model:**") | |
for i, section in enumerate(list(document_sections)): | |
if i in document_responses: | |
st.markdown(f"**Section {i+1}**\n{document_responses[i]}") | |
else: | |
if st.button(f"Chat about Section {i+1}"): | |
st.write('Reasoning with your inputs...') | |
#response = chat_with_model(user_prompt, section, model_choice) | |
st.write('Response:') | |
st.write(response) | |
document_responses[i] = response | |
filename = generate_filename(f"{user_prompt}_section_{i+1}", choice) | |
create_file(filename, user_prompt, response, should_save) | |
st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True) | |
if st.button('๐ฌ Chat'): | |
st.write('Reasoning with your inputs...') | |
user_prompt_sections = divide_prompt(user_prompt, max_length) | |
full_response = '' | |
for prompt_section in user_prompt_sections: | |
response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice) | |
full_response += response + '\n' # Combine the responses | |
response = full_response | |
st.write('Response:') | |
st.write(response) | |
filename = generate_filename(user_prompt, choice) | |
create_file(filename, user_prompt, response, should_save) | |
# Compose a file sidebar of markdown md files: | |
all_files = glob.glob("*.md") | |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names | |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order | |
if st.sidebar.button("๐ Delete All Text"): | |
for file in all_files: | |
os.remove(file) | |
st.experimental_rerun() | |
if st.sidebar.button("โฌ๏ธ Download All"): | |
zip_file = create_zip_of_files(all_files) | |
st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True) | |
file_contents='' | |
next_action='' | |
for file in all_files: | |
col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed | |
with col1: | |
if st.button("๐", key="md_"+file): # md emoji button | |
with open(file, 'r') as f: | |
file_contents = f.read() | |
next_action='md' | |
with col2: | |
st.markdown(get_table_download_link(file), unsafe_allow_html=True) | |
with col3: | |
if st.button("๐", key="open_"+file): # open emoji button | |
with open(file, 'r') as f: | |
file_contents = f.read() | |
next_action='open' | |
with col4: | |
if st.button("๐", key="read_"+file): # search emoji button | |
with open(file, 'r') as f: | |
file_contents = f.read() | |
next_action='search' | |
with col5: | |
if st.button("๐", key="delete_"+file): | |
os.remove(file) | |
st.experimental_rerun() | |
if len(file_contents) > 0: | |
if next_action=='open': | |
file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
if next_action=='md': | |
st.markdown(file_contents) | |
buttonlabel = '๐Run with Llama and GPT.' | |
if st.button(key='RunWithLlamaandGPT', label = buttonlabel): | |
user_prompt = file_contents | |
# Llama versus GPT Battle! | |
all="" | |
try: | |
st.write('๐Running with Llama.') | |
response = StreamLLMChatResponse(file_contents) | |
filename = generate_filename(user_prompt, "md") | |
create_file(filename, file_contents, response, should_save) | |
all=response | |
#SpeechSynthesis(response) | |
except: | |
st.markdown('Llama is sleeping. Restart ETA 30 seconds.') | |
# gpt | |
try: | |
st.write('๐Running with GPT.') | |
response2 = chat_with_model(user_prompt, file_contents, model_choice) | |
filename2 = generate_filename(file_contents, choice) | |
create_file(filename2, user_prompt, response, should_save) | |
all=all+response2 | |
#SpeechSynthesis(response2) | |
except: | |
st.markdown('GPT is sleeping. Restart ETA 30 seconds.') | |
SpeechSynthesis(all) | |
if next_action=='search': | |
file_content_area = st.text_area("File Contents:", file_contents, height=500) | |
st.write('๐Running with Llama and GPT.') | |
user_prompt = file_contents | |
# Llama versus GPT Battle! | |
all="" | |
try: | |
st.write('๐Running with Llama.') | |
response = StreamLLMChatResponse(file_contents) | |
filename = generate_filename(user_prompt, ".md") | |
create_file(filename, file_contents, response, should_save) | |
all=response | |
#SpeechSynthesis(response) | |
except: | |
st.markdown('Llama is sleeping. Restart ETA 30 seconds.') | |
# gpt | |
try: | |
st.write('๐Running with GPT.') | |
response2 = chat_with_model(user_prompt, file_contents, model_choice) | |
filename2 = generate_filename(file_contents, choice) | |
create_file(filename2, user_prompt, response, should_save) | |
all=all+response2 | |
#SpeechSynthesis(response2) | |
except: | |
st.markdown('GPT is sleeping. Restart ETA 30 seconds.') | |
SpeechSynthesis(all) | |
# Function to encode file to base64 | |
def get_base64_encoded_file(file_path): | |
with open(file_path, "rb") as file: | |
return base64.b64encode(file.read()).decode() | |
# Function to create a download link | |
def get_audio_download_link(file_path): | |
base64_file = get_base64_encoded_file(file_path) | |
return f'<a href="data:file/wav;base64,{base64_file}" download="{os.path.basename(file_path)}">โฌ๏ธ Download Audio</a>' | |
# Compose a file sidebar of past encounters | |
all_files = glob.glob("*.wav") | |
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names | |
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order | |
filekey = 'delall' | |
if st.sidebar.button("๐ Delete All Audio", key=filekey): | |
for file in all_files: | |
os.remove(file) | |
st.experimental_rerun() | |
for file in all_files: | |
col1, col2 = st.sidebar.columns([6, 1]) # adjust the ratio as needed | |
with col1: | |
st.markdown(file) | |
if st.button("๐ต", key="play_" + file): # play emoji button | |
audio_file = open(file, 'rb') | |
audio_bytes = audio_file.read() | |
st.audio(audio_bytes, format='audio/wav') | |
#st.markdown(get_audio_download_link(file), unsafe_allow_html=True) | |
#st.text_input(label="", value=file) | |
with col2: | |
if st.button("๐", key="delete_" + file): | |
os.remove(file) | |
st.experimental_rerun() | |
# Feedback | |
# Step: Give User a Way to Upvote or Downvote | |
GiveFeedback=False | |
if GiveFeedback: | |
with st.expander("Give your feedback ๐", expanded=False): | |
feedback = st.radio("Step 8: Give your feedback", ("๐ Upvote", "๐ Downvote")) | |
if feedback == "๐ Upvote": | |
st.write("You upvoted ๐. Thank you for your feedback!") | |
else: | |
st.write("You downvoted ๐. Thank you for your feedback!") | |
load_dotenv() | |
st.write(css, unsafe_allow_html=True) | |
st.header("Chat with documents :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
process_user_input(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
docs = st.file_uploader("import documents", accept_multiple_files=True) | |
with st.spinner("Processing"): | |
raw = pdf2txt(docs) | |
if len(raw) > 0: | |
length = str(len(raw)) | |
text_chunks = txt2chunks(raw) | |
vectorstore = vector_store(text_chunks) | |
st.session_state.conversation = get_chain(vectorstore) | |
st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing | |
filename = generate_filename(raw, 'txt') | |
create_file(filename, raw, '', should_save) | |
# Relocated! Hope you like your new space - enjoy! | |
# Display instructions and handle query parameters | |
#st.markdown("## Glossary Lookup\nEnter a term in the URL query, like `?q=Nanotechnology` or `?query=Martian Syndicate`.") | |
try: | |
query_params = st.query_params | |
#query = (query_params.get('q') or query_params.get('query') or [''])[0] | |
query = (query_params.get('q') or query_params.get('query') or ['']) | |
st.markdown('# Running query: ' + query) | |
if query: search_glossary(query) | |
except: | |
st.markdown(' ') | |
# Display the glossary grid | |
st.markdown("### ๐ฒ๐บ๏ธ Word Game Gallery") | |
display_images_and_wikipedia_summaries() | |
display_glossary_grid(roleplaying_glossary) | |
st.markdown("## Explore the vast universe of word games including board games with fascinating readable content and semantic rules where language is fun!.๐ ") | |
display_buttons_with_scores() | |
# Assuming the transhuman_glossary and other setup code remains the same | |
#st.write("Current Query Parameters:", st.query_params) | |
#st.markdown("### Query Parameters - These Deep Link Map to Remixable Methods, Navigate or Trigger Functionalities") | |
# Example: Using query parameters to navigate or trigger functionalities | |
if 'action' in st.query_params: | |
action = st.query_params()['action'][0] # Get the first (or only) 'action' parameter | |
if action == 'show_message': | |
st.success("Showing a message because 'action=show_message' was found in the URL.") | |
elif action == 'clear': | |
clear_query_params() | |
st.experimental_rerun() | |
# Handling repeated keys | |
if 'multi' in st.query_params: | |
multi_values = get_all_query_params('multi') | |
st.write("Values for 'multi':", multi_values) | |
# Manual entry for demonstration | |
st.write("Enter query parameters in the URL like this: ?action=show_message&multi=1&multi=2") | |
if 'query' in st.query_params: | |
query = st.query_params['query'][0] # Get the query parameter | |
# Display content or image based on the query | |
display_content_or_image(query) | |
# Add a clear query parameters button for convenience | |
if st.button("Clear Query Parameters", key='ClearQueryParams'): | |
# This will clear the browser URL's query parameters | |
st.experimental_set_query_params | |
st.experimental_rerun() | |
# 18. Run AI Pipeline | |
if __name__ == "__main__": | |
whisper_main() | |
main() |