Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
import gradio as gr | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
classifier = pipeline("text-classification", "michellejieli/emotion_text_classifier") | |
def transcribe(speech, state=""): | |
text = asr(speech)["text"] | |
state += text + " " | |
return text, state | |
def speech_to_text(speech): | |
text = asr(speech)["text"] | |
return text | |
def text_to_sentiment(text): | |
return classifier(text)[0]["label"] | |
demo = gr.Blocks() | |
with demo: | |
microphone = gr.Audio(source="microphone", type="filepath") | |
audio_file = gr.Audio(type="filepath") | |
text = gr.Textbox() | |
label = gr.Label() | |
b0 = gr.Button("Speech From Microphone") | |
b1 = gr.Button("Recognize Speech") | |
b2 = gr.Button("Classify Sentiment") | |
#b0.click(transcribe, inputs=[microphone, "state"], outputs=[text, "state"], live=True) | |
b0.click(transcribe, inputs=[microphone], outputs=[text]) | |
b1.click(speech_to_text, inputs=audio_file, outputs=text) | |
b2.click(text_to_sentiment, inputs=text, outputs=label) | |
gr.Markdown("""References: | |
1. ASR Model: https://huggingface.co/facebook/wav2vec2-base-960h | |
2. Sentiment: https://huggingface.co/michellejieli/emotion_text_classifier | |
3. ASR Lesson: https://gradio.app/real-time-speech-recognition/ | |
4. State: https://gradio.app/interface-state/ | |
5. Deepspeech: https://deepspeech.readthedocs.io/en/r0.9/ | |
""") | |
demo.launch() |