|
import spaces |
|
import gradio as gr |
|
import io |
|
import os |
|
import re |
|
import torch |
|
import torchaudio |
|
from pathlib import Path |
|
from whisperspeech.pipeline import Pipeline |
|
|
|
DEVEL=os.environ.get('DEVEL', False) |
|
|
|
title = """# 🙋🏻♂️ Welcome to Collabora's WhisperSpeech |
|
|
|
WhisperSpeech is an Open Source text-to-speech system built by Collabora and LAION by inverting Whisper. |
|
The model is fully open and you can run it on your local hardware. It's like **Stable Diffusion but for speech** |
|
– both powerful and easily customizable. |
|
|
|
[You can contribute to WhisperSpeech on Github.](https://github.com/collabora/WhisperSpeech) |
|
You can also join the discussion on Discord [![](https://dcbadge.vercel.app/api/server/FANw4rHD5E)](https://discord.gg/FANw4rHD5E) |
|
|
|
Huge thanks to [Tonic](https://huggingface.co/Tonic) who helped build this Space for WhisperSpeech. |
|
|
|
### How to Use It |
|
|
|
Write you text in the box, you can use language tags (`<en>` or `<pl>`) to create multilingual speech. |
|
Optionally you can upload a speech sample or give it a file URL to clone an existing voice. Check out the |
|
examples at the bottom of the page for inspiration. |
|
""" |
|
|
|
footer = """ |
|
|
|
### How to use it locally |
|
|
|
``` |
|
pip install -U WhisperSpeech |
|
``` |
|
|
|
Afterwards: |
|
|
|
``` |
|
from whisperspeech.pipeline import Pipeline |
|
|
|
pipe = Pipeline(torch_compile=True) |
|
pipe.generate_to_file("output.wav", "Hello from WhisperSpeech.") |
|
``` |
|
""" |
|
|
|
|
|
text_examples = [ |
|
["This is the first demo of Whisper Speech, a fully open source text-to-speech model trained by Collabora and Lion on the Juwels supercomputer.", None], |
|
["World War II or the Second World War was a global conflict that lasted from 1939 to 1945. The vast majority of the world's countries, including all the great powers, fought as part of two opposing military alliances: the Allies and the Axis.", "https://upload.wikimedia.org/wikipedia/commons/7/75/Winston_Churchill_-_Be_Ye_Men_of_Valour.ogg"], |
|
["<pl>To jest pierwszy test wielojęzycznego <en>Whisper Speech <pl>, modelu zamieniającego tekst na mowę, który Collabora i Laion nauczyli na superkomputerze <en>Jewels.", None], |
|
["<en> WhisperSpeech is an Open Source library that helps you convert text to speech. <pl>Teraz także po Polsku! <en>I think I just tried saying \"now also in Polish\", don't judge me...", None], |
|
|
|
["<pl>To jest pierwszy test naszego modelu. Pozdrawiamy serdecznie.", None], |
|
|
|
] |
|
|
|
def parse_multilingual_text(input_text): |
|
pattern = r"(?:<(\w+)>)|([^<]+)" |
|
cur_lang = 'en' |
|
segments = [] |
|
for i, (lang, txt) in enumerate(re.findall(pattern, input_text)): |
|
if lang: cur_lang = lang |
|
else: segments.append((cur_lang, f" {txt} ")) |
|
if not segments: return [("en", "")] |
|
return segments |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate_audio(pipe, segments, speaker, speaker_url, cps=14): |
|
if isinstance(speaker, (str, Path)): speaker = pipe.extract_spk_emb(speaker) |
|
elif speaker_url: speaker = pipe.extract_spk_emb(speaker_url) |
|
else: speaker = pipe.default_speaker |
|
langs, texts = [list(x) for x in zip(*segments)] |
|
print(texts, langs) |
|
stoks = pipe.t2s.generate(texts, cps=cps, lang=langs)[0] |
|
atoks = pipe.s2a.generate(stoks, speaker.unsqueeze(0)) |
|
audio = pipe.vocoder.decode(atoks) |
|
return audio.cpu() |
|
|
|
def whisper_speech_demo(multilingual_text, speaker_audio=None, speaker_url="", cps=14): |
|
if len(multilingual_text) == 0: |
|
raise gr.Error("Please enter some text for me to speak!") |
|
|
|
segments = parse_multilingual_text(multilingual_text) |
|
|
|
audio = generate_audio(pipe, segments, speaker_audio, speaker_url, cps) |
|
|
|
return (24000, audio.T.numpy()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
pipe = Pipeline(torch_compile=not DEVEL) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(title) |
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=2): |
|
text_input = gr.Textbox(label="Enter multilingual text💬📝", |
|
value=text_examples[0][0], |
|
info="You can use `<en>` for English and `<pl>` for Polish, see examples below.") |
|
cps = gr.Slider(value=14, minimum=10, maximum=15, step=.25, |
|
label="Tempo (in characters per second)") |
|
with gr.Row(equal_height=True): |
|
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)🌬️💬", |
|
sources=["upload", "microphone"], |
|
type='filepath') |
|
url_input = gr.Textbox(label="alternatively, you can paste in an audio file URL:") |
|
gr.Markdown(" \n ") |
|
generate_button = gr.Button("Try Collabora's WhisperSpeech🌟") |
|
with gr.Column(scale=1): |
|
output_audio = gr.Audio(label="WhisperSpeech says…") |
|
|
|
with gr.Column(): |
|
gr.Markdown("### Try these examples to get started !🌟🌬️") |
|
gr.Examples( |
|
examples=text_examples, |
|
inputs=[text_input, url_input], |
|
outputs=[output_audio], |
|
fn=whisper_speech_demo, |
|
cache_examples=not DEVEL, |
|
) |
|
|
|
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input, url_input, cps], outputs=output_audio) |
|
gr.Markdown(footer) |
|
|
|
demo.launch(server_port=3000 if DEVEL else None) |
|
|