Spaces:
Build error
Build error
import streamlit as st | |
st.write("# URLs for GPU RTX Nvidia 3070 Nsight pages") | |
urls = { | |
"GPUs Ampere architecture" : "https://en.wikipedia.org/wiki/GeForce_30_series", | |
"Ray Tracing Interactive": "https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#Interactive_ray_tracing", | |
"GeForce RTX 30 Series": "https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/", | |
} | |
for name, url in urls.items(): | |
st.write(f"- [{name}]({url})") | |
import streamlit as st | |
import tensorflow as tf | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
import pycuda.autoinit | |
import pycuda.driver as cuda | |
import tensorrt as trt | |
import nvtabular as nvt | |
import nvidia.dali as dali | |
import nvidia.dali.ops as ops | |
import nvidia.dali.types as types | |
import deepstream as ds | |
# Set up the Streamlit app | |
st.set_page_config(page_title="Deep Learning Libraries Demo") | |
# NVIDIA cuDNN | |
st.header("NVIDIA cuDNN") | |
st.write("cuDNN is a GPU-accelerated library of primitives for deep neural networks.") | |
# NVIDIA TensorRT | |
st.header("NVIDIA TensorRT") | |
st.write("TensorRT is a high-performance deep learning inference optimizer and runtime for production deployment.") | |
# NVIDIA Riva | |
st.header("NVIDIA Riva") | |
st.write("Riva is a platform for developing engaging and contextual AI-powered conversation apps.") | |
# NVIDIA DeepStream SDK | |
st.header("NVIDIA DeepStream SDK") | |
st.write("DeepStream is a real-time streaming analytics toolkit for AI-based video understanding and multi-sensor processing.") | |
# NVIDIA DALI | |
st.header("NVIDIA DALI") | |
st.write("DALI is a portable, open-source library for decoding and augmenting images and videos to accelerate deep learning applications.") | |
# Load an image and run it through a pre-trained model | |
st.header("Example: Image Classification with TensorFlow") | |
model = tf.keras.applications.MobileNetV2() | |
img_path = "example.jpg" | |
img = image.load_img(img_path, target_size=(224, 224)) | |
x = image.img_to_array(img) | |
x = np.expand_dims(x, axis=0) | |
x = tf.keras.applications.mobilenet_v2.preprocess_input(x) | |
preds = model.predict(x) | |
st.write(f"Predicted class: {tf.keras.applications.mobilenet_v2.decode_predictions(preds, top=1)[0][0][1]}") | |
# Clean up | |
del model, img, x, preds | |