Update app.py
Browse files
app.py
CHANGED
@@ -1,194 +1,125 @@
|
|
1 |
import streamlit as st
|
2 |
import openai
|
3 |
from openai import OpenAI
|
4 |
-
import os
|
5 |
-
import base64
|
6 |
-
import cv2
|
7 |
from moviepy.editor import VideoFileClip
|
8 |
-
import pytz
|
9 |
from datetime import datetime
|
10 |
-
import
|
11 |
from audio_recorder_streamlit import audio_recorder
|
12 |
|
13 |
-
|
14 |
-
openai.api_key = os.getenv('OPENAI_API_KEY')
|
15 |
-
openai.organization = os.getenv('OPENAI_ORG_ID')
|
16 |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
17 |
|
18 |
-
# Define the model to be used
|
19 |
MODEL = "gpt-4o-2024-05-13"
|
20 |
|
|
|
|
|
|
|
21 |
def generate_filename(prompt, file_type):
|
22 |
central = pytz.timezone('US/Central')
|
23 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
24 |
-
|
25 |
-
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
|
26 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
27 |
|
28 |
def create_file(filename, prompt, response, should_save=True):
|
29 |
-
if
|
30 |
-
|
31 |
-
base_filename, ext = os.path.splitext(filename)
|
32 |
-
if ext in ['.txt', '.htm', '.md']:
|
33 |
-
with open(f"{base_filename}.md", 'w', encoding='utf-8') as file:
|
34 |
file.write(response)
|
35 |
|
36 |
def process_text(text_input):
|
37 |
if text_input:
|
38 |
st.session_state.messages.append({"role": "user", "content": text_input})
|
39 |
-
|
40 |
-
|
41 |
-
st.markdown(text_input)
|
42 |
-
|
43 |
-
with st.chat_message("assistant"):
|
44 |
-
completion = client.chat.completions.create(
|
45 |
-
model=MODEL,
|
46 |
-
messages=[
|
47 |
-
{"role": m["role"], "content": m["content"]}
|
48 |
-
for m in st.session_state.messages
|
49 |
-
],
|
50 |
-
stream=False
|
51 |
-
)
|
52 |
-
return_text = completion.choices[0].message.content
|
53 |
-
st.write("Assistant: " + return_text)
|
54 |
-
filename = generate_filename(text_input, "md")
|
55 |
-
create_file(filename, text_input, return_text, should_save=True)
|
56 |
-
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
57 |
-
|
58 |
-
def process_text2(MODEL='gpt-4o-2024-05-13', text_input='What is 2+2 and what is an imaginary number'):
|
59 |
-
if text_input:
|
60 |
-
st.session_state.messages.append({"role": "user", "content": text_input})
|
61 |
-
completion = client.chat.completions.create(
|
62 |
-
model=MODEL,
|
63 |
-
messages=st.session_state.messages
|
64 |
-
)
|
65 |
return_text = completion.choices[0].message.content
|
66 |
-
st.
|
67 |
filename = generate_filename(text_input, "md")
|
68 |
-
create_file(filename, text_input, return_text
|
69 |
-
|
70 |
|
71 |
def save_image(image_input, filename):
|
72 |
-
# Save the uploaded image file
|
73 |
with open(filename, "wb") as f:
|
74 |
f.write(image_input.getvalue())
|
75 |
return filename
|
76 |
|
77 |
def process_image(image_input):
|
78 |
if image_input:
|
79 |
-
st.
|
80 |
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
81 |
-
st.session_state.messages.append({"role": "user", "content": [
|
82 |
-
|
83 |
-
{"type": "image_url", "image_url": {
|
84 |
-
"url": f"data:image/png;base64,{base64_image}"}
|
85 |
-
}
|
86 |
-
]})
|
87 |
-
response = client.chat.completions.create(
|
88 |
-
model=MODEL,
|
89 |
-
messages=st.session_state.messages,
|
90 |
-
temperature=0.0,
|
91 |
-
)
|
92 |
image_response = response.choices[0].message.content
|
93 |
-
st.
|
94 |
-
|
95 |
-
filename_md = generate_filename(image_input.name + '- ' + image_response, "md")
|
96 |
-
filename_png = filename_md.replace('.md', '.' + image_input.name.split('.')[-1])
|
97 |
-
|
98 |
create_file(filename_md, image_response, '', True)
|
99 |
-
|
100 |
with open(filename_md, "w", encoding="utf-8") as f:
|
101 |
f.write(image_response)
|
102 |
-
|
103 |
-
filename_img = image_input.name
|
104 |
save_image(image_input, filename_img)
|
105 |
-
|
106 |
st.session_state.messages.append({"role": "assistant", "content": image_response})
|
107 |
-
|
108 |
return image_response
|
109 |
|
110 |
def process_audio(audio_input):
|
111 |
if audio_input:
|
112 |
st.session_state.messages.append({"role": "user", "content": audio_input})
|
113 |
-
transcription = client.audio.transcriptions.create(
|
114 |
-
|
115 |
-
file=audio_input,
|
116 |
-
)
|
117 |
-
response = client.chat.completions.create(
|
118 |
-
model=MODEL,
|
119 |
-
messages=[
|
120 |
-
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
|
121 |
-
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],}
|
122 |
-
],
|
123 |
-
temperature=0,
|
124 |
-
)
|
125 |
audio_response = response.choices[0].message.content
|
126 |
-
st.
|
127 |
filename = generate_filename(transcription.text, "md")
|
128 |
create_file(filename, transcription.text, audio_response, should_save=True)
|
129 |
st.session_state.messages.append({"role": "assistant", "content": audio_response})
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def process_audio_for_video(video_input):
|
132 |
if video_input:
|
133 |
st.session_state.messages.append({"role": "user", "content": video_input})
|
134 |
-
transcription = client.audio.transcriptions.create(
|
135 |
-
|
136 |
-
file=video_input,
|
137 |
-
)
|
138 |
-
response = client.chat.completions.create(
|
139 |
-
model=MODEL,
|
140 |
-
messages=[
|
141 |
-
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
|
142 |
-
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
|
143 |
-
],
|
144 |
-
temperature=0,
|
145 |
-
)
|
146 |
video_response = response.choices[0].message.content
|
147 |
-
st.
|
148 |
filename = generate_filename(transcription, "md")
|
149 |
create_file(filename, transcription, video_response, should_save=True)
|
150 |
st.session_state.messages.append({"role": "assistant", "content": video_response})
|
151 |
return video_response
|
152 |
|
153 |
def save_video(video_file):
|
154 |
-
# Save the uploaded video file
|
155 |
with open(video_file.name, "wb") as f:
|
156 |
f.write(video_file.getbuffer())
|
157 |
return video_file.name
|
158 |
|
159 |
def process_video(video_path, seconds_per_frame=2):
|
160 |
-
base64Frames = []
|
161 |
-
|
162 |
-
|
163 |
-
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
164 |
-
fps = video.get(cv2.CAP_PROP_FPS)
|
165 |
-
frames_to_skip = int(fps * seconds_per_frame)
|
166 |
-
curr_frame = 0
|
167 |
-
|
168 |
-
# Loop through the video and extract frames at specified sampling rate
|
169 |
while curr_frame < total_frames - 1:
|
170 |
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
171 |
success, frame = video.read()
|
172 |
-
if not success:
|
173 |
-
break
|
174 |
_, buffer = cv2.imencode(".jpg", frame)
|
175 |
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
176 |
curr_frame += frames_to_skip
|
177 |
-
|
178 |
video.release()
|
179 |
-
|
180 |
-
# Extract audio from video
|
181 |
audio_path = f"{base_video_path}.mp3"
|
182 |
clip = VideoFileClip(video_path)
|
183 |
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
184 |
clip.audio.close()
|
185 |
clip.close()
|
186 |
-
|
187 |
print(f"Extracted {len(base64Frames)} frames")
|
188 |
print(f"Extracted audio to {audio_path}")
|
189 |
-
|
190 |
return base64Frames, audio_path
|
191 |
-
|
192 |
def save_and_play_audio(audio_recorder):
|
193 |
audio_bytes = audio_recorder(key='audio_recorder')
|
194 |
if audio_bytes:
|
@@ -198,42 +129,12 @@ def save_and_play_audio(audio_recorder):
|
|
198 |
st.audio(audio_bytes, format="audio/wav")
|
199 |
return filename
|
200 |
return None
|
201 |
-
|
202 |
-
def process_audio_and_video(video_input):
|
203 |
-
if video_input is not None:
|
204 |
-
# Save the uploaded video file
|
205 |
-
video_path = save_video(video_input)
|
206 |
-
|
207 |
-
# Process the saved video
|
208 |
-
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
209 |
-
|
210 |
-
# Get the transcript for the video model call
|
211 |
-
transcript = process_audio_for_video(video_input)
|
212 |
-
|
213 |
-
# Generate a summary with visual and audio
|
214 |
-
st.session_state.messages.append({"role": "user", "content": [
|
215 |
-
"These are the frames from the video.",
|
216 |
-
*map(lambda x: {"type": "image_url",
|
217 |
-
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
218 |
-
{"type": "text", "text": f"The audio transcription is: {transcript}"}
|
219 |
-
]})
|
220 |
-
response = client.chat.completions.create(
|
221 |
-
model=MODEL,
|
222 |
-
messages=st.session_state.messages,
|
223 |
-
temperature=0,
|
224 |
-
)
|
225 |
-
video_response = response.choices[0].message.content
|
226 |
-
st.markdown(video_response)
|
227 |
-
|
228 |
-
filename = generate_filename(transcript, "md")
|
229 |
-
create_file(filename, transcript, video_response, should_save=True)
|
230 |
-
st.session_state.messages.append({"role": "assistant", "content": video_response})
|
231 |
|
232 |
def main():
|
233 |
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
|
234 |
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
|
235 |
if option == "Text":
|
236 |
-
text_input = st.
|
237 |
if text_input:
|
238 |
process_text(text_input)
|
239 |
elif option == "Image":
|
@@ -245,52 +146,31 @@ def main():
|
|
245 |
elif option == "Video":
|
246 |
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
247 |
process_audio_and_video(video_input)
|
248 |
-
|
249 |
-
|
250 |
-
all_files =
|
251 |
-
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10] # exclude files with short names
|
252 |
-
all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by filename length which puts similar prompts together - consider making date and time of file optional.
|
253 |
-
|
254 |
st.sidebar.title("File Gallery")
|
255 |
for file in all_files:
|
256 |
-
with st.sidebar.expander(file):
|
257 |
-
|
258 |
-
|
259 |
-
st.code(file_content, language="markdown")
|
260 |
-
|
261 |
-
# ChatBot Entry
|
262 |
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
|
263 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
264 |
-
|
265 |
-
st.markdown(prompt)
|
266 |
with st.chat_message("assistant"):
|
267 |
-
completion = client.chat.completions.create(
|
268 |
-
|
269 |
-
messages=st.session_state.messages,
|
270 |
-
stream=True
|
271 |
-
)
|
272 |
-
response = process_text2(text_input=prompt)
|
273 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
274 |
|
275 |
-
# Transcript to arxiv and client chat completion
|
276 |
filename = save_and_play_audio(audio_recorder)
|
277 |
if filename is not None:
|
278 |
transcript = transcribe_canary(filename)
|
279 |
-
|
280 |
-
# Search ArXiV and get the Summary and Reference Papers Listing
|
281 |
result = search_arxiv(transcript)
|
282 |
-
|
283 |
-
# Start chatbot with transcript:
|
284 |
st.session_state.messages.append({"role": "user", "content": transcript})
|
285 |
-
|
286 |
-
st.markdown(transcript)
|
287 |
with st.chat_message("assistant"):
|
288 |
-
completion = client.chat.completions.create(
|
289 |
-
|
290 |
-
messages=st.session_state.messages,
|
291 |
-
stream=True
|
292 |
-
)
|
293 |
-
response = process_text2(text_input=prompt)
|
294 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
295 |
|
296 |
if __name__ == "__main__":
|
|
|
1 |
import streamlit as st
|
2 |
import openai
|
3 |
from openai import OpenAI
|
4 |
+
import os, base64, cv2, glob
|
|
|
|
|
5 |
from moviepy.editor import VideoFileClip
|
|
|
6 |
from datetime import datetime
|
7 |
+
import pytz
|
8 |
from audio_recorder_streamlit import audio_recorder
|
9 |
|
10 |
+
openai.api_key, openai.organization = os.getenv('OPENAI_API_KEY'), os.getenv('OPENAI_ORG_ID')
|
|
|
|
|
11 |
client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
12 |
|
|
|
13 |
MODEL = "gpt-4o-2024-05-13"
|
14 |
|
15 |
+
if 'messages' not in st.session_state:
|
16 |
+
st.session_state.messages = []
|
17 |
+
|
18 |
def generate_filename(prompt, file_type):
|
19 |
central = pytz.timezone('US/Central')
|
20 |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
|
21 |
+
safe_prompt = "".join(x for x in prompt.replace(" ", "_").replace("\n", "_") if x.isalnum() or x == "_")[:90]
|
|
|
22 |
return f"{safe_date_time}_{safe_prompt}.{file_type}"
|
23 |
|
24 |
def create_file(filename, prompt, response, should_save=True):
|
25 |
+
if should_save and os.path.splitext(filename)[1] in ['.txt', '.htm', '.md']:
|
26 |
+
with open(os.path.splitext(filename)[0] + ".md", 'w', encoding='utf-8') as file:
|
|
|
|
|
|
|
27 |
file.write(response)
|
28 |
|
29 |
def process_text(text_input):
|
30 |
if text_input:
|
31 |
st.session_state.messages.append({"role": "user", "content": text_input})
|
32 |
+
st.chat_message("user", text_input)
|
33 |
+
completion = client.chat.completions.create(model=MODEL, messages=[{"role": m["role"], "content": m["content"]} for m in st.session_state.messages], stream=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return_text = completion.choices[0].message.content
|
35 |
+
st.chat_message("assistant", return_text)
|
36 |
filename = generate_filename(text_input, "md")
|
37 |
+
create_file(filename, text_input, return_text)
|
38 |
+
st.session_state.messages.append({"role": "assistant", "content": return_text})
|
39 |
|
40 |
def save_image(image_input, filename):
|
|
|
41 |
with open(filename, "wb") as f:
|
42 |
f.write(image_input.getvalue())
|
43 |
return filename
|
44 |
|
45 |
def process_image(image_input):
|
46 |
if image_input:
|
47 |
+
st.chat_message("user", 'Processing image: ' + image_input.name)
|
48 |
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
49 |
+
st.session_state.messages.append({"role": "user", "content": [{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}]})
|
50 |
+
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0.0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
image_response = response.choices[0].message.content
|
52 |
+
st.chat_message("assistant", image_response)
|
53 |
+
filename_md, filename_img = generate_filename(image_input.name + '- ' + image_response, "md"), image_input.name
|
|
|
|
|
|
|
54 |
create_file(filename_md, image_response, '', True)
|
|
|
55 |
with open(filename_md, "w", encoding="utf-8") as f:
|
56 |
f.write(image_response)
|
|
|
|
|
57 |
save_image(image_input, filename_img)
|
|
|
58 |
st.session_state.messages.append({"role": "assistant", "content": image_response})
|
|
|
59 |
return image_response
|
60 |
|
61 |
def process_audio(audio_input):
|
62 |
if audio_input:
|
63 |
st.session_state.messages.append({"role": "user", "content": audio_input})
|
64 |
+
transcription = client.audio.transcriptions.create(model="whisper-1", file=audio_input)
|
65 |
+
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}]}], temperature=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
audio_response = response.choices[0].message.content
|
67 |
+
st.chat_message("assistant", audio_response)
|
68 |
filename = generate_filename(transcription.text, "md")
|
69 |
create_file(filename, transcription.text, audio_response, should_save=True)
|
70 |
st.session_state.messages.append({"role": "assistant", "content": audio_response})
|
71 |
|
72 |
+
def process_audio_and_video(video_input):
|
73 |
+
if video_input is not None:
|
74 |
+
video_path = save_video(video_input)
|
75 |
+
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
76 |
+
transcript = process_audio_for_video(video_input)
|
77 |
+
st.session_state.messages.append({"role": "user", "content": ["These are the frames from the video.", *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), {"type": "text", "text": f"The audio transcription is: {transcript}"}]})
|
78 |
+
response = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, temperature=0)
|
79 |
+
video_response = response.choices[0].message.content
|
80 |
+
st.chat_message("assistant", video_response)
|
81 |
+
filename = generate_filename(transcript, "md")
|
82 |
+
create_file(filename, transcript, video_response, should_save=True)
|
83 |
+
st.session_state.messages.append({"role": "assistant", "content": video_response})
|
84 |
+
|
85 |
def process_audio_for_video(video_input):
|
86 |
if video_input:
|
87 |
st.session_state.messages.append({"role": "user", "content": video_input})
|
88 |
+
transcription = client.audio.transcriptions.create(model="whisper-1", file=video_input)
|
89 |
+
response = client.chat.completions.create(model=MODEL, messages=[{"role": "system", "content":"You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."}, {"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}]}], temperature=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
video_response = response.choices[0].message.content
|
91 |
+
st.chat_message("assistant", video_response)
|
92 |
filename = generate_filename(transcription, "md")
|
93 |
create_file(filename, transcription, video_response, should_save=True)
|
94 |
st.session_state.messages.append({"role": "assistant", "content": video_response})
|
95 |
return video_response
|
96 |
|
97 |
def save_video(video_file):
|
|
|
98 |
with open(video_file.name, "wb") as f:
|
99 |
f.write(video_file.getbuffer())
|
100 |
return video_file.name
|
101 |
|
102 |
def process_video(video_path, seconds_per_frame=2):
|
103 |
+
base64Frames, base_video_path = [], os.path.splitext(video_path)[0]
|
104 |
+
video, total_frames, fps = cv2.VideoCapture(video_path), int(cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FRAME_COUNT)), cv2.VideoCapture(video_path).get(cv2.CAP_PROP_FPS)
|
105 |
+
curr_frame, frames_to_skip = 0, int(fps * seconds_per_frame)
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
while curr_frame < total_frames - 1:
|
107 |
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
108 |
success, frame = video.read()
|
109 |
+
if not success: break
|
|
|
110 |
_, buffer = cv2.imencode(".jpg", frame)
|
111 |
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
112 |
curr_frame += frames_to_skip
|
|
|
113 |
video.release()
|
|
|
|
|
114 |
audio_path = f"{base_video_path}.mp3"
|
115 |
clip = VideoFileClip(video_path)
|
116 |
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
117 |
clip.audio.close()
|
118 |
clip.close()
|
|
|
119 |
print(f"Extracted {len(base64Frames)} frames")
|
120 |
print(f"Extracted audio to {audio_path}")
|
|
|
121 |
return base64Frames, audio_path
|
122 |
+
|
123 |
def save_and_play_audio(audio_recorder):
|
124 |
audio_bytes = audio_recorder(key='audio_recorder')
|
125 |
if audio_bytes:
|
|
|
129 |
st.audio(audio_bytes, format="audio/wav")
|
130 |
return filename
|
131 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
def main():
|
134 |
st.markdown("##### GPT-4o Omni Model: Text, Audio, Image, & Video")
|
135 |
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
|
136 |
if option == "Text":
|
137 |
+
text_input = st.chat_input("Enter your text:")
|
138 |
if text_input:
|
139 |
process_text(text_input)
|
140 |
elif option == "Image":
|
|
|
146 |
elif option == "Video":
|
147 |
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
148 |
process_audio_and_video(video_input)
|
149 |
+
|
150 |
+
all_files = sorted(glob.glob("*.md"), key=lambda x: (os.path.splitext(x)[1], x), reverse=True)
|
151 |
+
all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 10]
|
|
|
|
|
|
|
152 |
st.sidebar.title("File Gallery")
|
153 |
for file in all_files:
|
154 |
+
with st.sidebar.expander(file), open(file, "r", encoding="utf-8") as f:
|
155 |
+
st.code(f.read(), language="markdown")
|
156 |
+
|
|
|
|
|
|
|
157 |
if prompt := st.chat_input("GPT-4o Multimodal ChatBot - What can I help you with?"):
|
158 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
159 |
+
st.chat_message("user", prompt)
|
|
|
160 |
with st.chat_message("assistant"):
|
161 |
+
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
|
162 |
+
response = process_text(text_input=prompt)
|
|
|
|
|
|
|
|
|
163 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
164 |
|
|
|
165 |
filename = save_and_play_audio(audio_recorder)
|
166 |
if filename is not None:
|
167 |
transcript = transcribe_canary(filename)
|
|
|
|
|
168 |
result = search_arxiv(transcript)
|
|
|
|
|
169 |
st.session_state.messages.append({"role": "user", "content": transcript})
|
170 |
+
st.chat_message("user", transcript)
|
|
|
171 |
with st.chat_message("assistant"):
|
172 |
+
completion = client.chat.completions.create(model=MODEL, messages=st.session_state.messages, stream=True)
|
173 |
+
response = process_text(text_input=prompt)
|
|
|
|
|
|
|
|
|
174 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
175 |
|
176 |
if __name__ == "__main__":
|