Create backup-app3-0521-app.py
Browse files- backup-app3-0521-app.py +172 -0
backup-app3-0521-app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import openai
|
3 |
+
from openai import OpenAI
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
import cv2
|
7 |
+
from moviepy.editor import VideoFileClip
|
8 |
+
|
9 |
+
# documentation
|
10 |
+
# 1. Cookbook: https://cookbook.openai.com/examples/gpt4o/introduction_to_gpt4o
|
11 |
+
# 2. Configure your Project and Orgs to limit/allow Models: https://platform.openai.com/settings/organization/general
|
12 |
+
# 3. Watch your Billing! https://platform.openai.com/settings/organization/billing/overview
|
13 |
+
|
14 |
+
|
15 |
+
# Set API key and organization ID from environment variables
|
16 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
17 |
+
openai.organization = os.getenv('OPENAI_ORG_ID')
|
18 |
+
client = OpenAI(api_key= os.getenv('OPENAI_API_KEY'), organization=os.getenv('OPENAI_ORG_ID'))
|
19 |
+
|
20 |
+
# Define the model to be used
|
21 |
+
#MODEL = "gpt-4o"
|
22 |
+
MODEL = "gpt-4o-2024-05-13"
|
23 |
+
|
24 |
+
def process_text():
|
25 |
+
text_input = st.text_input("Enter your text:")
|
26 |
+
if text_input:
|
27 |
+
completion = client.chat.completions.create(
|
28 |
+
model=MODEL,
|
29 |
+
messages=[
|
30 |
+
{"role": "system", "content": "You are a helpful assistant. Help me with my math homework!"},
|
31 |
+
{"role": "user", "content": f"Hello! Could you solve {text_input}?"}
|
32 |
+
]
|
33 |
+
)
|
34 |
+
st.write("Assistant: " + completion.choices[0].message.content)
|
35 |
+
|
36 |
+
def process_image(image_input):
|
37 |
+
if image_input:
|
38 |
+
base64_image = base64.b64encode(image_input.read()).decode("utf-8")
|
39 |
+
response = client.chat.completions.create(
|
40 |
+
model=MODEL,
|
41 |
+
messages=[
|
42 |
+
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
|
43 |
+
{"role": "user", "content": [
|
44 |
+
{"type": "text", "text": "Help me understand what is in this picture and list ten facts as markdown outline with appropriate emojis that describes what you see."},
|
45 |
+
{"type": "image_url", "image_url": {
|
46 |
+
"url": f"data:image/png;base64,{base64_image}"}
|
47 |
+
}
|
48 |
+
]}
|
49 |
+
],
|
50 |
+
temperature=0.0,
|
51 |
+
)
|
52 |
+
st.markdown(response.choices[0].message.content)
|
53 |
+
|
54 |
+
def process_audio(audio_input):
|
55 |
+
if audio_input:
|
56 |
+
transcription = client.audio.transcriptions.create(
|
57 |
+
model="whisper-1",
|
58 |
+
file=audio_input,
|
59 |
+
)
|
60 |
+
response = client.chat.completions.create(
|
61 |
+
model=MODEL,
|
62 |
+
messages=[
|
63 |
+
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
|
64 |
+
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription.text}"}],}
|
65 |
+
],
|
66 |
+
temperature=0,
|
67 |
+
)
|
68 |
+
st.markdown(response.choices[0].message.content)
|
69 |
+
|
70 |
+
def process_audio_for_video(video_input):
|
71 |
+
if video_input:
|
72 |
+
transcription = client.audio.transcriptions.create(
|
73 |
+
model="whisper-1",
|
74 |
+
file=video_input,
|
75 |
+
)
|
76 |
+
response = client.chat.completions.create(
|
77 |
+
model=MODEL,
|
78 |
+
messages=[
|
79 |
+
{"role": "system", "content":"""You are generating a transcript summary. Create a summary of the provided transcription. Respond in Markdown."""},
|
80 |
+
{"role": "user", "content": [{"type": "text", "text": f"The audio transcription is: {transcription}"}],}
|
81 |
+
],
|
82 |
+
temperature=0,
|
83 |
+
)
|
84 |
+
st.markdown(response.choices[0].message.content)
|
85 |
+
return response.choices[0].message.content
|
86 |
+
|
87 |
+
def save_video(video_file):
|
88 |
+
# Save the uploaded video file
|
89 |
+
with open(video_file.name, "wb") as f:
|
90 |
+
f.write(video_file.getbuffer())
|
91 |
+
return video_file.name
|
92 |
+
|
93 |
+
def process_video(video_path, seconds_per_frame=2):
|
94 |
+
base64Frames = []
|
95 |
+
base_video_path, _ = os.path.splitext(video_path)
|
96 |
+
video = cv2.VideoCapture(video_path)
|
97 |
+
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
98 |
+
fps = video.get(cv2.CAP_PROP_FPS)
|
99 |
+
frames_to_skip = int(fps * seconds_per_frame)
|
100 |
+
curr_frame = 0
|
101 |
+
|
102 |
+
# Loop through the video and extract frames at specified sampling rate
|
103 |
+
while curr_frame < total_frames - 1:
|
104 |
+
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
|
105 |
+
success, frame = video.read()
|
106 |
+
if not success:
|
107 |
+
break
|
108 |
+
_, buffer = cv2.imencode(".jpg", frame)
|
109 |
+
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
|
110 |
+
curr_frame += frames_to_skip
|
111 |
+
|
112 |
+
video.release()
|
113 |
+
|
114 |
+
# Extract audio from video
|
115 |
+
audio_path = f"{base_video_path}.mp3"
|
116 |
+
clip = VideoFileClip(video_path)
|
117 |
+
clip.audio.write_audiofile(audio_path, bitrate="32k")
|
118 |
+
clip.audio.close()
|
119 |
+
clip.close()
|
120 |
+
|
121 |
+
print(f"Extracted {len(base64Frames)} frames")
|
122 |
+
print(f"Extracted audio to {audio_path}")
|
123 |
+
|
124 |
+
return base64Frames, audio_path
|
125 |
+
|
126 |
+
def process_audio_and_video(video_input):
|
127 |
+
if video_input is not None:
|
128 |
+
# Save the uploaded video file
|
129 |
+
video_path = save_video(video_input )
|
130 |
+
|
131 |
+
# Process the saved video
|
132 |
+
base64Frames, audio_path = process_video(video_path, seconds_per_frame=1)
|
133 |
+
|
134 |
+
# Get the transcript for the video model call
|
135 |
+
transcript = process_audio_for_video(video_input)
|
136 |
+
|
137 |
+
# Generate a summary with visual and audio
|
138 |
+
response = client.chat.completions.create(
|
139 |
+
model=MODEL,
|
140 |
+
messages=[
|
141 |
+
{"role": "system", "content": """You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"""},
|
142 |
+
{"role": "user", "content": [
|
143 |
+
"These are the frames from the video.",
|
144 |
+
*map(lambda x: {"type": "image_url",
|
145 |
+
"image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
|
146 |
+
{"type": "text", "text": f"The audio transcription is: {transcript}"}
|
147 |
+
]},
|
148 |
+
],
|
149 |
+
temperature=0,
|
150 |
+
)
|
151 |
+
|
152 |
+
st.markdown(response.choices[0].message.content)
|
153 |
+
|
154 |
+
|
155 |
+
def main():
|
156 |
+
st.markdown("### OpenAI GPT-4o Model")
|
157 |
+
st.markdown("#### The Omni Model with Text, Audio, Image, and Video")
|
158 |
+
option = st.selectbox("Select an option", ("Text", "Image", "Audio", "Video"))
|
159 |
+
if option == "Text":
|
160 |
+
process_text()
|
161 |
+
elif option == "Image":
|
162 |
+
image_input = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
163 |
+
process_image(image_input)
|
164 |
+
elif option == "Audio":
|
165 |
+
audio_input = st.file_uploader("Upload an audio file", type=["mp3", "wav"])
|
166 |
+
process_audio(audio_input)
|
167 |
+
elif option == "Video":
|
168 |
+
video_input = st.file_uploader("Upload a video file", type=["mp4"])
|
169 |
+
process_audio_and_video(video_input)
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
main()
|