Spaces:
Runtime error
Runtime error
# PyTorch implementation of Darknet | |
# This is a custom, hard-coded version of darknet with | |
# YOLOv3 implementation for openimages database. This | |
# was written to test viability of implementing YOLO | |
# for face detection followed by emotion / sentiment | |
# analysis. | |
# | |
# Configuration, weights and data are hardcoded. | |
# Additional options include, ability to create | |
# subset of data with faces exracted for labelling. | |
# | |
# Author : Saikiran Tharimena | |
# Co-Authors: Kjetil Marinius Sjulsen, Juan Carlos Calvet Lopez | |
# Project : Emotion / Sentiment Detection from news images | |
# Date : 12 September 2022 | |
# Version : v0.1 | |
# | |
# (C) Schibsted ASA | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
import numpy as np | |
import cv2 | |
def unique(tensor): | |
tensor_np = tensor.cpu().numpy() | |
unique_np = np.unique(tensor_np) | |
unique_tensor = torch.from_numpy(unique_np) | |
tensor_res = tensor.new(unique_tensor.shape) | |
tensor_res.copy_(unique_tensor) | |
return tensor_res | |
def bbox_iou(box1, box2): | |
""" | |
Returns the IoU of two bounding boxes | |
""" | |
#Get the coordinates of bounding boxes | |
b1_x1, b1_y1, b1_x2, b1_y2 = box1[:,0], box1[:,1], box1[:,2], box1[:,3] | |
b2_x1, b2_y1, b2_x2, b2_y2 = box2[:,0], box2[:,1], box2[:,2], box2[:,3] | |
#get the corrdinates of the intersection rectangle | |
inter_rect_x1 = torch.max(b1_x1, b2_x1) | |
inter_rect_y1 = torch.max(b1_y1, b2_y1) | |
inter_rect_x2 = torch.min(b1_x2, b2_x2) | |
inter_rect_y2 = torch.min(b1_y2, b2_y2) | |
#Intersection area | |
inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=0) | |
#Union Area | |
b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1) | |
b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1) | |
iou = inter_area / (b1_area + b2_area - inter_area) | |
return iou | |
def predict_transform(prediction, inp_dim, anchors, num_classes, CUDA = True): | |
batch_size = prediction.size(0) | |
stride = inp_dim // prediction.size(2) | |
grid_size = inp_dim // stride | |
bbox_attrs = 5 + num_classes | |
num_anchors = len(anchors) | |
prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size) | |
prediction = prediction.transpose(1,2).contiguous() | |
prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs) | |
anchors = [(a[0]/stride, a[1]/stride) for a in anchors] | |
#Sigmoid the centre_X, centre_Y. and object confidencce | |
prediction[:,:,0] = torch.sigmoid(prediction[:,:,0]) | |
prediction[:,:,1] = torch.sigmoid(prediction[:,:,1]) | |
prediction[:,:,4] = torch.sigmoid(prediction[:,:,4]) | |
#Add the center offsets | |
grid = np.arange(grid_size) | |
a,b = np.meshgrid(grid, grid) | |
x_offset = torch.FloatTensor(a).view(-1,1) | |
y_offset = torch.FloatTensor(b).view(-1,1) | |
if CUDA: | |
x_offset = x_offset.cuda() | |
y_offset = y_offset.cuda() | |
x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0) | |
prediction[:,:,:2] += x_y_offset | |
#log space transform height and the width | |
anchors = torch.FloatTensor(anchors) | |
if CUDA: | |
anchors = anchors.cuda() | |
anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0) | |
prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors | |
prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 + num_classes])) | |
prediction[:,:,:4] *= stride | |
return prediction | |
def write_results(prediction, confidence, num_classes, nms_conf = 0.4): | |
conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2) | |
prediction = prediction*conf_mask | |
box_corner = prediction.new(prediction.shape) | |
box_corner[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2) | |
box_corner[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2) | |
box_corner[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2) | |
box_corner[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2) | |
prediction[:,:,:4] = box_corner[:,:,:4] | |
batch_size = prediction.size(0) | |
write = False | |
for ind in range(batch_size): | |
image_pred = prediction[ind] #image Tensor | |
#confidence threshholding | |
#NMS | |
max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1) | |
max_conf = max_conf.float().unsqueeze(1) | |
max_conf_score = max_conf_score.float().unsqueeze(1) | |
seq = (image_pred[:,:5], max_conf, max_conf_score) | |
image_pred = torch.cat(seq, 1) | |
non_zero_ind = (torch.nonzero(image_pred[:,4])) | |
try: | |
image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7) | |
except: | |
continue | |
if image_pred_.shape[0] == 0: | |
continue | |
# | |
#Get the various classes detected in the image | |
img_classes = unique(image_pred_[:,-1]) # -1 index holds the class index | |
for cls in img_classes: | |
#perform NMS | |
#get the detections with one particular class | |
cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1) | |
class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze() | |
image_pred_class = image_pred_[class_mask_ind].view(-1,7) | |
#sort the detections such that the entry with the maximum objectness | |
#confidence is at the top | |
conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1] | |
image_pred_class = image_pred_class[conf_sort_index] | |
idx = image_pred_class.size(0) #Number of detections | |
for i in range(idx): | |
#Get the IOUs of all boxes that come after the one we are looking at | |
#in the loop | |
try: | |
ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:]) | |
except ValueError: | |
break | |
except IndexError: | |
break | |
#Zero out all the detections that have IoU > treshhold | |
iou_mask = (ious < nms_conf).float().unsqueeze(1) | |
image_pred_class[i+1:] *= iou_mask | |
#Remove the non-zero entries | |
non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze() | |
image_pred_class = image_pred_class[non_zero_ind].view(-1,7) | |
batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind) #Repeat the batch_id for as many detections of the class cls in the image | |
seq = batch_ind, image_pred_class | |
if not write: | |
output = torch.cat(seq,1) | |
write = True | |
else: | |
out = torch.cat(seq,1) | |
output = torch.cat((output,out)) | |
try: | |
return output | |
except: | |
return 0 | |
def letterbox_image(img, inp_dim): | |
'''resize image with unchanged aspect ratio using padding''' | |
img_w, img_h = img.shape[1], img.shape[0] | |
w, h = inp_dim | |
new_w = int(img_w * min(w/img_w, h/img_h)) | |
new_h = int(img_h * min(w/img_w, h/img_h)) | |
resized_image = cv2.resize(img, (new_w,new_h), interpolation = cv2.INTER_CUBIC) | |
canvas = np.full((inp_dim[1], inp_dim[0], 3), 128) | |
canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image | |
return canvas | |
def prep_image(img, inp_dim): | |
""" | |
Prepare image for inputting to the neural network. | |
Returns a Variable | |
""" | |
img = (letterbox_image(img, (inp_dim, inp_dim))) | |
img = img[:,:,::-1].transpose((2,0,1)).copy() | |
img = torch.from_numpy(img).float().div(255.0).unsqueeze(0) | |
return img | |
def load_classes(namesfile): | |
fp = open(namesfile, "r") | |
names = fp.read().split("\n")[:-1] | |
return names |