awacke1's picture
Upload 2 files
d79a601
raw
history blame
5.94 kB
import gradio as gr
import random
import matplotlib
import matplotlib.pyplot as plt
import pandas as pd
import shap
import xgboost as xgb
from datasets import load_dataset
matplotlib.use("Agg")
dataset = load_dataset("scikit-learn/adult-census-income")
X_train = dataset["train"].to_pandas()
_ = X_train.pop("fnlwgt")
_ = X_train.pop("race")
y_train = X_train.pop("income")
y_train = (y_train == ">50K").astype(int)
categorical_columns = [
"workclass",
"education",
"marital.status",
"occupation",
"relationship",
"sex",
"native.country",
]
X_train = X_train.astype({col: "category" for col in categorical_columns})
data = xgb.DMatrix(X_train, label=y_train, enable_categorical=True)
model = xgb.train(params={"objective": "binary:logistic"}, dtrain=data)
explainer = shap.TreeExplainer(model)
def predict(*args):
df = pd.DataFrame([args], columns=X_train.columns)
df = df.astype({col: "category" for col in categorical_columns})
pos_pred = model.predict(xgb.DMatrix(df, enable_categorical=True))
return {">50K": float(pos_pred[0]), "<=50K": 1 - float(pos_pred[0])}
def interpret(*args):
df = pd.DataFrame([args], columns=X_train.columns)
df = df.astype({col: "category" for col in categorical_columns})
shap_values = explainer.shap_values(xgb.DMatrix(df, enable_categorical=True))
scores_desc = list(zip(shap_values[0], X_train.columns))
scores_desc = sorted(scores_desc)
fig_m = plt.figure(tight_layout=True)
plt.barh([s[1] for s in scores_desc], [s[0] for s in scores_desc])
plt.title("Feature Shap Values")
plt.ylabel("Feature")
plt.xlabel("Shap Value")
plt.tight_layout()
return fig_m
unique_class = sorted(X_train["workclass"].unique())
unique_education = sorted(X_train["education"].unique())
unique_marital_status = sorted(X_train["marital.status"].unique())
unique_relationship = sorted(X_train["relationship"].unique())
unique_occupation = sorted(X_train["occupation"].unique())
unique_sex = sorted(X_train["sex"].unique())
unique_country = sorted(X_train["native.country"].unique())
with gr.Blocks() as demo:
gr.Markdown("""
**Income Classification with XGBoost 💰**: This demo uses an XGBoost classifier predicts income based on demographic factors, along with Shapley value-based *explanations*. The [source code for this Gradio demo is here](https://huggingface.co/spaces/gradio/xgboost-income-prediction-with-explainability/blob/main/app.py).
""")
with gr.Row():
with gr.Column():
age = gr.Slider(label="Age", minimum=17, maximum=90, step=1, randomize=True)
work_class = gr.Dropdown(
label="Workclass",
choices=unique_class,
value=lambda: random.choice(unique_class),
)
education = gr.Dropdown(
label="Education Level",
choices=unique_education,
value=lambda: random.choice(unique_education),
)
years = gr.Slider(
label="Years of schooling",
minimum=1,
maximum=16,
step=1,
randomize=True,
)
marital_status = gr.Dropdown(
label="Marital Status",
choices=unique_marital_status,
value=lambda: random.choice(unique_marital_status),
)
occupation = gr.Dropdown(
label="Occupation",
choices=unique_occupation,
value=lambda: random.choice(unique_occupation),
)
with gr.Column():
relationship = gr.Dropdown(
label="Relationship Status",
choices=unique_relationship,
value=lambda: random.choice(unique_relationship),
)
sex = gr.Dropdown(
label="Sex", choices=unique_sex, value=lambda: random.choice(unique_sex)
)
capital_gain = gr.Slider(
label="Capital Gain",
minimum=0,
maximum=100000,
step=500,
randomize=True,
)
capital_loss = gr.Slider(
label="Capital Loss", minimum=0, maximum=10000, step=500, randomize=True
)
hours_per_week = gr.Slider(
label="Hours Per Week Worked", minimum=1, maximum=99, step=1
)
country = gr.Dropdown(
label="Native Country",
choices=unique_country,
value=lambda: random.choice(unique_country),
)
with gr.Column():
label = gr.Label()
plot = gr.Plot()
with gr.Row():
predict_btn = gr.Button(value="Predict")
interpret_btn = gr.Button(value="Explain")
predict_btn.click(
predict,
inputs=[
age,
work_class,
education,
years,
marital_status,
occupation,
relationship,
sex,
capital_gain,
capital_loss,
hours_per_week,
country,
],
outputs=[label],
)
interpret_btn.click(
interpret,
inputs=[
age,
work_class,
education,
years,
marital_status,
occupation,
relationship,
sex,
capital_gain,
capital_loss,
hours_per_week,
country,
],
outputs=[plot],
)
demo.launch()