Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -10,4 +10,110 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
import streamlit as st
|
14 |
+
|
15 |
+
|
16 |
+
st.markdown("""
|
17 |
+
# 2. Streamlit Docker Example
|
18 |
+
https://huggingface.co/spaces/DockerTemplates/streamlit-docker-example/tree/main
|
19 |
+
# Dockerfile:
|
20 |
+
FROM python:3.8.9
|
21 |
+
WORKDIR /app
|
22 |
+
COPY ./requirements.txt /app/requirements.txt
|
23 |
+
COPY ./packages.txt /app/packages.txt
|
24 |
+
RUN apt-get update && xargs -r -a /app/packages.txt apt-get install -y && rm -rf /var/lib/apt/lists/*
|
25 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
26 |
+
# User
|
27 |
+
RUN useradd -m -u 1000 user
|
28 |
+
USER user
|
29 |
+
ENV HOME /home/user
|
30 |
+
ENV PATH $HOME/.local/bin:$PATH
|
31 |
+
WORKDIR $HOME
|
32 |
+
RUN mkdir app
|
33 |
+
WORKDIR $HOME/app
|
34 |
+
COPY . $HOME/app
|
35 |
+
EXPOSE 8501
|
36 |
+
CMD streamlit run app.py
|
37 |
+
# app.py:
|
38 |
+
import streamlit as st
|
39 |
+
import pandas as pd
|
40 |
+
import numpy as np
|
41 |
+
st.title('Uber pickups in NYC')
|
42 |
+
DATE_COLUMN = 'date/time'
|
43 |
+
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
|
44 |
+
'streamlit-demo-data/uber-raw-data-sep14.csv.gz')
|
45 |
+
@st.cache
|
46 |
+
def load_data(nrows):
|
47 |
+
data = pd.read_csv(DATA_URL, nrows=nrows)
|
48 |
+
lowercase = lambda x: str(x).lower()
|
49 |
+
data.rename(lowercase, axis='columns', inplace=True)
|
50 |
+
data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
|
51 |
+
return data
|
52 |
+
data_load_state = st.text('Loading data...')
|
53 |
+
data = load_data(10000)
|
54 |
+
data_load_state.text("Done! (using st.cache)")
|
55 |
+
if st.checkbox('Show raw data'):
|
56 |
+
st.subheader('Raw data')
|
57 |
+
st.write(data)
|
58 |
+
st.subheader('Number of pickups by hour')
|
59 |
+
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
|
60 |
+
st.bar_chart(hist_values)
|
61 |
+
# Some number in the range 0-23
|
62 |
+
hour_to_filter = st.slider('hour', 0, 23, 17)
|
63 |
+
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]
|
64 |
+
st.subheader('Map of all pickups at %s:00' % hour_to_filter)
|
65 |
+
st.map(filtered_data)
|
66 |
+
# requirements.txt
|
67 |
+
streamlit
|
68 |
+
numpy
|
69 |
+
pandas
|
70 |
+
# 2. Gradio Docker Example
|
71 |
+
https://huggingface.co/spaces/sayakpaul/demo-docker-gradio/blob/main/Dockerfile
|
72 |
+
# Dockerfile:
|
73 |
+
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
74 |
+
# you will also find guides on how best to write your Dockerfile
|
75 |
+
FROM python:3.9
|
76 |
+
WORKDIR /code
|
77 |
+
COPY ./requirements.txt /code/requirements.txt
|
78 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
79 |
+
# Set up a new user named "user" with user ID 1000
|
80 |
+
RUN useradd -m -u 1000 user
|
81 |
+
# Switch to the "user" user
|
82 |
+
USER user
|
83 |
+
# Set home to the user's home directory
|
84 |
+
ENV HOME=/home/user \
|
85 |
+
PATH=/home/user/.local/bin:$PATH
|
86 |
+
# Set the working directory to the user's home directory
|
87 |
+
WORKDIR $HOME/app
|
88 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
89 |
+
COPY --chown=user . $HOME/app
|
90 |
+
CMD ["python", "main.py"]
|
91 |
+
# main.py
|
92 |
+
import gradio as gr
|
93 |
+
import torch
|
94 |
+
import requests
|
95 |
+
from torchvision import transforms
|
96 |
+
model = torch.hub.load("pytorch/vision:v0.6.0", "resnet18", pretrained=True).eval()
|
97 |
+
response = requests.get("https://git.io/JJkYN")
|
98 |
+
labels = response.text.split("\n")
|
99 |
+
def predict(inp):
|
100 |
+
inp = transforms.ToTensor()(inp).unsqueeze(0)
|
101 |
+
with torch.no_grad():
|
102 |
+
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
|
103 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
104 |
+
return confidences
|
105 |
+
def run():
|
106 |
+
demo = gr.Interface(
|
107 |
+
fn=predict,
|
108 |
+
inputs=gr.inputs.Image(type="pil"),
|
109 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
110 |
+
)
|
111 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
112 |
+
if __name__ == "__main__":
|
113 |
+
run()
|
114 |
+
# requirements.txt
|
115 |
+
gradio
|
116 |
+
torch
|
117 |
+
torchvision
|
118 |
+
requests
|
119 |
+
""")
|