Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.feature_selection import SelectKBest, f_classif
|
5 |
+
from sklearn.preprocessing import StandardScaler
|
6 |
+
from sklearn.ensemble import IsolationForest
|
7 |
+
from sklearn.decomposition import PCA
|
8 |
+
import nltk
|
9 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
10 |
+
from nltk.tokenize import word_tokenize
|
11 |
+
from nltk.corpus import stopwords
|
12 |
+
from collections import Counter
|
13 |
+
import matplotlib.pyplot as plt
|
14 |
+
|
15 |
+
# Download necessary NLTK data
|
16 |
+
nltk.download('vader_lexicon')
|
17 |
+
nltk.download('punkt')
|
18 |
+
nltk.download('stopwords')
|
19 |
+
|
20 |
+
def main():
|
21 |
+
st.title("AI in Data Science Demo")
|
22 |
+
|
23 |
+
# Sidebar for navigation
|
24 |
+
page = st.sidebar.selectbox("Choose a demo", ["Feature Engineering", "Anomaly Detection", "NLP Analysis"])
|
25 |
+
|
26 |
+
if page == "Feature Engineering":
|
27 |
+
feature_engineering_demo()
|
28 |
+
elif page == "Anomaly Detection":
|
29 |
+
anomaly_detection_demo()
|
30 |
+
else:
|
31 |
+
nlp_demo()
|
32 |
+
|
33 |
+
def feature_engineering_demo():
|
34 |
+
st.header("Automated Feature Engineering and Selection")
|
35 |
+
|
36 |
+
# Generate sample data
|
37 |
+
X = np.random.rand(100, 5)
|
38 |
+
y = np.random.randint(0, 2, 100)
|
39 |
+
|
40 |
+
# Feature selection
|
41 |
+
selector = SelectKBest(f_classif, k=3)
|
42 |
+
X_new = selector.fit_transform(X, y)
|
43 |
+
|
44 |
+
# PCA
|
45 |
+
scaler = StandardScaler()
|
46 |
+
X_scaled = scaler.fit_transform(X)
|
47 |
+
pca = PCA(n_components=2)
|
48 |
+
X_pca = pca.fit_transform(X_scaled)
|
49 |
+
|
50 |
+
# Display results
|
51 |
+
st.subheader("Original Features")
|
52 |
+
st.write(pd.DataFrame(X, columns=[f"Feature {i+1}" for i in range(5)]).head())
|
53 |
+
|
54 |
+
st.subheader("Selected Top 3 Features")
|
55 |
+
st.write(pd.DataFrame(X_new, columns=[f"Selected Feature {i+1}" for i in range(3)]).head())
|
56 |
+
|
57 |
+
st.subheader("PCA Transformation")
|
58 |
+
st.write(pd.DataFrame(X_pca, columns=["PC1", "PC2"]).head())
|
59 |
+
|
60 |
+
# Visualization
|
61 |
+
fig, ax = plt.subplots()
|
62 |
+
ax.scatter(X_pca[:, 0], X_pca[:, 1], c=y)
|
63 |
+
ax.set_xlabel("First Principal Component")
|
64 |
+
ax.set_ylabel("Second Principal Component")
|
65 |
+
ax.set_title("PCA of Dataset")
|
66 |
+
st.pyplot(fig)
|
67 |
+
|
68 |
+
def anomaly_detection_demo():
|
69 |
+
st.header("Anomaly Detection")
|
70 |
+
|
71 |
+
# Generate sample data with anomalies
|
72 |
+
np.random.seed(42)
|
73 |
+
X = np.random.randn(100, 2)
|
74 |
+
X[-5:] = X[-5:] + [4, 4] # Add some anomalies
|
75 |
+
|
76 |
+
# Fit Isolation Forest
|
77 |
+
clf = IsolationForest(contamination=0.1, random_state=42)
|
78 |
+
y_pred = clf.fit_predict(X)
|
79 |
+
|
80 |
+
# Visualization
|
81 |
+
fig, ax = plt.subplots()
|
82 |
+
ax.scatter(X[:, 0], X[:, 1], c=y_pred, cmap='viridis')
|
83 |
+
ax.set_title("Anomaly Detection using Isolation Forest")
|
84 |
+
ax.set_xlabel("Feature 1")
|
85 |
+
ax.set_ylabel("Feature 2")
|
86 |
+
st.pyplot(fig)
|
87 |
+
|
88 |
+
st.write("Points in yellow are detected as anomalies.")
|
89 |
+
|
90 |
+
def nlp_demo():
|
91 |
+
st.header("NLP Analysis")
|
92 |
+
|
93 |
+
# Sample text input
|
94 |
+
text = st.text_area("Enter text for analysis", "I love using AI for data analysis. It's exciting and powerful!")
|
95 |
+
|
96 |
+
if text:
|
97 |
+
# Sentiment Analysis
|
98 |
+
sia = SentimentIntensityAnalyzer()
|
99 |
+
sentiment = sia.polarity_scores(text)
|
100 |
+
|
101 |
+
st.subheader("Sentiment Analysis")
|
102 |
+
st.write(f"Positive: {sentiment['pos']:.2f}")
|
103 |
+
st.write(f"Neutral: {sentiment['neu']:.2f}")
|
104 |
+
st.write(f"Negative: {sentiment['neg']:.2f}")
|
105 |
+
|
106 |
+
# Simple keyword extraction
|
107 |
+
tokens = word_tokenize(text.lower())
|
108 |
+
stop_words = set(stopwords.words('english'))
|
109 |
+
keywords = [word for word in tokens if word.isalnum() and word not in stop_words]
|
110 |
+
keyword_freq = Counter(keywords).most_common(5)
|
111 |
+
|
112 |
+
st.subheader("Top Keywords")
|
113 |
+
st.write(pd.DataFrame(keyword_freq, columns=["Keyword", "Frequency"]))
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
main()
|