Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
st.
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
if st.button("Generate Text"):
|
12 |
-
output = generator(prompt, max_length=100, do_sample=True)
|
13 |
-
st.write(output[0]['generated_text'])
|
|
|
1 |
+
# Step 1: Install the required libraries
|
2 |
+
!pip install streamlit plotly transformers
|
3 |
+
|
4 |
+
# Step 2: Load the Huggingface model for sentiment analysis
|
5 |
+
import transformers
|
6 |
+
import torch
|
7 |
+
|
8 |
+
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
|
9 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = transformers.AutoModelForSequenceClassification.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Step 3: Create a function to analyze the sentiment of text using the Huggingface model
|
13 |
+
def analyze_sentiment(text):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt")
|
15 |
+
outputs = model(**inputs)
|
16 |
+
scores = torch.nn.functional.softmax(outputs.logits, dim=1).detach().numpy()[0]
|
17 |
+
sentiment = scores.argmax()
|
18 |
+
return sentiment
|
19 |
+
|
20 |
+
# Step 4: Define a Python list dictionary of the top five largest hospitals in the state of Minnesota
|
21 |
+
hospital_data = [
|
22 |
+
{
|
23 |
+
"name": "Mayo Clinic",
|
24 |
+
"beds": 1500,
|
25 |
+
"latitude": 44.023501,
|
26 |
+
"longitude": -92.465032,
|
27 |
+
"url": "https://www.mayoclinic.org/appointments"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"name": "University of Minnesota Medical Center",
|
31 |
+
"beds": 1077,
|
32 |
+
"latitude": 44.969478,
|
33 |
+
"longitude": -93.236351,
|
34 |
+
"url": "https://www.mhealth.org/ummc"
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "Abbott Northwestern Hospital",
|
38 |
+
"beds": 1034,
|
39 |
+
"latitude": 44.952221,
|
40 |
+
"longitude": -93.266389,
|
41 |
+
"url": "https://www.allinahealth.org/locations/abbott-northwestern-hospital"
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"name": "St. Cloud Hospital",
|
45 |
+
"beds": 489,
|
46 |
+
"latitude": 45.554935,
|
47 |
+
"longitude": -94.171829,
|
48 |
+
"url": "https://www.centracare.com/locations/st-cloud-hospital/"
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"name": "Essentia Health-St. Mary's Medical Center",
|
52 |
+
"beds": 391,
|
53 |
+
"latitude": 46.783839,
|
54 |
+
"longitude": -92.103965,
|
55 |
+
"url": "https://www.essentiahealth.org/find-facility/profile/st-marys-medical-center-duluth/"
|
56 |
+
}
|
57 |
+
]
|
58 |
+
|
59 |
+
# Step 5: Save the Python list dictionary as a CSV file
|
60 |
+
import csv
|
61 |
+
|
62 |
+
with open("hospital_data.csv", mode="w", newline="") as file:
|
63 |
+
writer = csv.DictWriter(file, fieldnames=["name", "beds", "latitude", "longitude", "url"])
|
64 |
+
writer.writeheader()
|
65 |
+
for hospital in hospital_data:
|
66 |
+
writer.writerow(hospital)
|
67 |
+
|
68 |
+
# Step 6: Create a Streamlit app that uses Plotly graph objects like treemap to visualize the sentiment analysis results and the hospital data
|
69 |
import streamlit as st
|
70 |
+
import plotly.express as px
|
71 |
+
|
72 |
+
st.title("Sentiment Analysis and Hospital Data Visualization")
|
73 |
+
|
74 |
+
# Sentiment analysis section
|
75 |
+
st.header("Sentiment Analysis")
|
76 |
|
77 |
+
text = st.text_input("Enter some text:")
|
78 |
+
if text:
|
79 |
+
sentiment = analyze_sentiment(text)
|
80 |
+
st.write("Sentiment:", sentiment)
|
81 |
|
82 |
+
# Hospital data section
|
83 |
+
st.header("Hospital Data")
|
84 |
|
85 |
+
df = px.data.tips()
|
86 |
+
fig = px.treemap(hospital_data, path=["name"], values="beds", color="beds")
|
87 |
+
st.plotly_chart(fig)
|
88 |
|
|
|
|
|
|