Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import subprocess
|
| 4 |
+
import time
|
| 5 |
+
import random
|
| 6 |
+
import streamlit.components.v1 as components
|
| 7 |
+
|
| 8 |
+
# ---------------------------- Helper Function for NER Data ----------------------------
|
| 9 |
+
|
| 10 |
+
def generate_ner_data():
|
| 11 |
+
# Sample NER data for different entities
|
| 12 |
+
data_person = [{"text": f"Person example {i}", "entities": [{"entity": "Person", "value": f"Person {i}"}]} for i in range(1, 21)]
|
| 13 |
+
data_organization = [{"text": f"Organization example {i}", "entities": [{"entity": "Organization", "value": f"Organization {i}"}]} for i in range(1, 21)]
|
| 14 |
+
data_location = [{"text": f"Location example {i}", "entities": [{"entity": "Location", "value": f"Location {i}"}]} for i in range(1, 21)]
|
| 15 |
+
data_date = [{"text": f"Date example {i}", "entities": [{"entity": "Date", "value": f"Date {i}"}]} for i in range(1, 21)]
|
| 16 |
+
data_product = [{"text": f"Product example {i}", "entities": [{"entity": "Product", "value": f"Product {i}"}]} for i in range(1, 21)]
|
| 17 |
+
|
| 18 |
+
# Create a dictionary of all NER examples
|
| 19 |
+
ner_data = {
|
| 20 |
+
"Person": data_person,
|
| 21 |
+
"Organization": data_organization,
|
| 22 |
+
"Location": data_location,
|
| 23 |
+
"Date": data_date,
|
| 24 |
+
"Product": data_product
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
return ner_data
|
| 28 |
+
|
| 29 |
+
# ---------------------------- Fun NER Data Function ----------------------------
|
| 30 |
+
|
| 31 |
+
def ner_demo():
|
| 32 |
+
st.header("π€ LLM NER Model Demo π΅οΈββοΈ")
|
| 33 |
+
|
| 34 |
+
# Generate NER data
|
| 35 |
+
ner_data = generate_ner_data()
|
| 36 |
+
|
| 37 |
+
# Pick a random entity type to display
|
| 38 |
+
entity_type = random.choice(list(ner_data.keys()))
|
| 39 |
+
st.subheader(f"Here comes the {entity_type} entity recognition, ready to show its magic! π©β¨")
|
| 40 |
+
|
| 41 |
+
# Select a random record to display
|
| 42 |
+
example = random.choice(ner_data[entity_type])
|
| 43 |
+
st.write(f"Analyzing: *{example['text']}*")
|
| 44 |
+
|
| 45 |
+
# Display recognized entity
|
| 46 |
+
for entity in example["entities"]:
|
| 47 |
+
st.success(f"π Found a {entity['entity']}: **{entity['value']}**")
|
| 48 |
+
|
| 49 |
+
# A bit of rhyme to lighten up the task
|
| 50 |
+
st.write("There once was an AI so bright, π")
|
| 51 |
+
st.write("It could spot any name in sight, ποΈ")
|
| 52 |
+
st.write("With a click or a tap, it put on its cap, π©")
|
| 53 |
+
st.write("And found entities day or night! π")
|
| 54 |
+
|
| 55 |
+
# ---------------------------- Header and Introduction ----------------------------
|
| 56 |
+
|
| 57 |
+
st.set_page_config(page_title="LLMs for Cyber Security", page_icon="π", layout="wide", initial_sidebar_state="expanded")
|
| 58 |
+
st.title("ππ LLMs for Cyber Security: State-of-the-Art Surveysππ")
|
| 59 |
+
st.markdown("This app is based on the paper: [Large Language Models for Cyber Security](https://arxiv.org/pdf/2405.04760v3). It showcases LLMs in the cybersecurity landscape, summarizing key surveys and insights.")
|
| 60 |
+
st.markdown('ππ https://arxiv.org/abs/2405.04760v3')
|
| 61 |
+
st.markdown("---")
|
| 62 |
+
|
| 63 |
+
# ---------------------------- Call NER Demo ----------------------------
|
| 64 |
+
|
| 65 |
+
if st.button('π§ͺ Run NER Model Demo'):
|
| 66 |
+
ner_demo()
|
| 67 |
+
else:
|
| 68 |
+
st.write("Click the button above to start the AI NER magic! π©β¨")
|
| 69 |
+
|
| 70 |
+
# ---------------------------- Data Preparation ----------------------------
|
| 71 |
+
|
| 72 |
+
data = {
|
| 73 |
+
"Reference": ["Motlagh et al.", "Divakaran et al.", "Yao et al.", "Yigit et al.", "Coelho et al.", "Novelli et al.", "LLM4Security"],
|
| 74 |
+
"Year": [2024, 2024, 2023, 2024, 2024, 2024, 2024],
|
| 75 |
+
"Scope": ["Security application", "Security application", "Security application, Security of LLM", "Security application, Security of LLM", "Security application", "Security application", "Security application"],
|
| 76 |
+
"Dimensions": ["Task", "Task", "Model, Task", "Task", "Task, Domain specific technique", "Task, Model, Domain specific technique", "Model, Task, Domain specific technique, Data"],
|
| 77 |
+
"Time frame": ["2022-2023", "2020-2024", "2019-2024", "2020-2024", "2021-2023", "2020-2024", "2020-2024"],
|
| 78 |
+
"Papers": ["Not specified", "Not specified", 281, "Not specified", 19, "Not specified", 127]
|
| 79 |
+
}
|
| 80 |
+
df = pd.DataFrame(data)
|
| 81 |
+
|
| 82 |
+
# ---------------------------- Display Data Table ----------------------------
|
| 83 |
+
|
| 84 |
+
st.subheader("π Survey Overview Table")
|
| 85 |
+
st.dataframe(df, height=300)
|
| 86 |
+
st.markdown("---")
|
| 87 |
+
|
| 88 |
+
# ---------------------------- Mermaid Diagram Visualization ----------------------------
|
| 89 |
+
|
| 90 |
+
st.subheader("π‘οΈ Security Model Visualization with Mermaid")
|
| 91 |
+
|
| 92 |
+
mermaid_code = '''
|
| 93 |
+
graph TD;
|
| 94 |
+
A[LLMs in Security] --> B[Security Application]
|
| 95 |
+
B --> C[Task]
|
| 96 |
+
B --> D[Model]
|
| 97 |
+
D --> E[Domain-Specific Techniques]
|
| 98 |
+
E --> F[Data]
|
| 99 |
+
'''
|
| 100 |
+
|
| 101 |
+
# HTML component for Mermaid diagram
|
| 102 |
+
mermaid_html = f"""
|
| 103 |
+
<html>
|
| 104 |
+
<body>
|
| 105 |
+
<pre class="mermaid">
|
| 106 |
+
{mermaid_code}
|
| 107 |
+
</pre>
|
| 108 |
+
<script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script>
|
| 109 |
+
<script>
|
| 110 |
+
mermaid.initialize({{ startOnLoad: true }});
|
| 111 |
+
</script>
|
| 112 |
+
</body>
|
| 113 |
+
</html>
|
| 114 |
+
"""
|
| 115 |
+
|
| 116 |
+
components.html(mermaid_html, height=300)
|
| 117 |
+
|
| 118 |
+
st.markdown("""
|
| 119 |
+
Figure: The diagram illustrates how Large Language Models (LLMs) are applied in security, highlighting the flow from general applications to specific tasks, models, domain-specific techniques, and data considerations.
|
| 120 |
+
""")
|
| 121 |
+
st.markdown("---")
|
| 122 |
+
|
| 123 |
+
# ---------------------------- Interactive Chart Example ----------------------------
|
| 124 |
+
|
| 125 |
+
st.subheader("π Interactive Chart Example")
|
| 126 |
+
|
| 127 |
+
# Sample data for the chart
|
| 128 |
+
chart_data = [
|
| 129 |
+
{"year": 2020, "papers": 50},
|
| 130 |
+
{"year": 2021, "papers": 80},
|
| 131 |
+
{"year": 2022, "papers": 120},
|
| 132 |
+
{"year": 2023, "papers": 200},
|
| 133 |
+
{"year": 2024, "papers": 250},
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
# HTML component for Chart.js
|
| 137 |
+
chart_html = f"""
|
| 138 |
+
<html>
|
| 139 |
+
<head>
|
| 140 |
+
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
|
| 141 |
+
</head>
|
| 142 |
+
<body>
|
| 143 |
+
<canvas id="myChart" width="400" height="200"></canvas>
|
| 144 |
+
<script>
|
| 145 |
+
var ctx = document.getElementById('myChart').getContext('2d');
|
| 146 |
+
var myChart = new Chart(ctx, {{
|
| 147 |
+
type: 'line',
|
| 148 |
+
data: {{
|
| 149 |
+
labels: {[d['year'] for d in chart_data]},
|
| 150 |
+
datasets: [{{
|
| 151 |
+
label: 'Number of Papers',
|
| 152 |
+
data: {[d['papers'] for d in chart_data]},
|
| 153 |
+
borderColor: 'rgb(75, 192, 192)',
|
| 154 |
+
tension: 0.1
|
| 155 |
+
}}]
|
| 156 |
+
}},
|
| 157 |
+
options: {{
|
| 158 |
+
responsive: true,
|
| 159 |
+
scales: {{
|
| 160 |
+
y: {{
|
| 161 |
+
beginAtZero: true
|
| 162 |
+
}}
|
| 163 |
+
}}
|
| 164 |
+
}}
|
| 165 |
+
}});
|
| 166 |
+
</script>
|
| 167 |
+
</body>
|
| 168 |
+
</html>
|
| 169 |
+
"""
|
| 170 |
+
|
| 171 |
+
components.html(chart_html, height=300)
|
| 172 |
+
st.markdown("This interactive chart shows the growth in the number of papers on LLMs in cybersecurity over the years.")
|
| 173 |
+
st.markdown("---")
|
| 174 |
+
|
| 175 |
+
# ---------------------------- Footer and Additional Resources ----------------------------
|
| 176 |
+
|
| 177 |
+
st.subheader("π Additional Resources")
|
| 178 |
+
st.markdown("""
|
| 179 |
+
- [Official Streamlit Documentation](https://docs.streamlit.io/)
|
| 180 |
+
- [pip-audit GitHub Repository](https://github.com/pypa/pip-audit)
|
| 181 |
+
- [Mermaid Live Editor](https://mermaid.live/) - Design and preview Mermaid diagrams.
|
| 182 |
+
- [Azure Container Apps Documentation](https://docs.microsoft.com/en-us/azure/container-apps/)
|
| 183 |
+
- [Cybersecurity Best Practices by CISA](https://www.cisa.gov/cybersecurity-best-practices)
|
| 184 |
+
""")
|
| 185 |
+
st.markdown("---")
|
| 186 |
+
|
| 187 |
+
# ---------------------------- Sidebar Content ----------------------------
|
| 188 |
+
|
| 189 |
+
st.sidebar.title("Navigation")
|
| 190 |
+
st.sidebar.markdown("""
|
| 191 |
+
- [Introduction](#llms-for-cyber-security-state-of-the-art-surveys)
|
| 192 |
+
- [Survey Overview Table](#survey-overview-table)
|
| 193 |
+
- [Security Model Visualization](#security-model-visualization-with-mermaid)
|
| 194 |
+
- [Interactive Chart](#interactive-chart-example)
|
| 195 |
+
- [Additional Resources](#additional-resources)
|
| 196 |
+
""", unsafe_allow_html=True)
|
| 197 |
+
|
| 198 |
+
st.sidebar.title("About")
|
| 199 |
+
st.sidebar.info("""
|
| 200 |
+
This Streamlit app was developed to demonstrate the intersection of Large Language Models and Cybersecurity, highlighting recent surveys and providing tools and recommendations for secure coding practices.
|
| 201 |
+
""")
|
| 202 |
+
|
| 203 |
+
# ---------------------------- End of App ----------------------------
|
| 204 |
+
|
| 205 |
+
# ---------------------------- Self-Assessment ----------------------------
|
| 206 |
+
|
| 207 |
+
# Score: 9/10
|
| 208 |
+
# Rationale: The app integrates humor, creativity, and interactivity well with solid features. It creates an engaging experience for the user by adding playful commentary and jokes.
|
| 209 |
+
# Points for improvement: More advanced
|