Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import glob
|
10 |
+
from pathlib import Path
|
11 |
+
from datetime import datetime, timedelta
|
12 |
+
import edge_tts
|
13 |
+
import asyncio
|
14 |
+
import requests
|
15 |
+
from collections import defaultdict
|
16 |
+
import streamlit.components.v1 as components
|
17 |
+
from urllib.parse import quote
|
18 |
+
from xml.etree import ElementTree as ET
|
19 |
+
from datasets import load_dataset
|
20 |
+
import base64
|
21 |
+
import re
|
22 |
+
|
23 |
+
# π§ Initialize session state variables
|
24 |
+
SESSION_VARS = {
|
25 |
+
'search_history': [], # Track search history
|
26 |
+
'last_voice_input': "", # Last voice input
|
27 |
+
'transcript_history': [], # Conversation history
|
28 |
+
'should_rerun': False, # Trigger for UI updates
|
29 |
+
'search_columns': [], # Available search columns
|
30 |
+
'initial_search_done': False, # First search flag
|
31 |
+
'tts_voice': "en-US-AriaNeural", # Default voice
|
32 |
+
'arxiv_last_query': "", # Last ArXiv search
|
33 |
+
'dataset_loaded': False, # Dataset load status
|
34 |
+
'current_page': 0, # Current data page
|
35 |
+
'data_cache': None, # Data cache
|
36 |
+
'dataset_info': None, # Dataset metadata
|
37 |
+
'nps_submitted': False, # Track if user submitted NPS
|
38 |
+
'nps_last_shown': None, # When NPS was last shown
|
39 |
+
'old_val': None, # Previous voice input value
|
40 |
+
'voice_text': None # Processed voice text
|
41 |
+
}
|
42 |
+
|
43 |
+
# Constants
|
44 |
+
ROWS_PER_PAGE = 100
|
45 |
+
MIN_SEARCH_SCORE = 0.3
|
46 |
+
EXACT_MATCH_BOOST = 2.0
|
47 |
+
|
48 |
+
# Initialize session state
|
49 |
+
for var, default in SESSION_VARS.items():
|
50 |
+
if var not in st.session_state:
|
51 |
+
st.session_state[var] = default
|
52 |
+
|
53 |
+
# Voice Component Setup
|
54 |
+
def create_voice_component():
|
55 |
+
"""Create the voice input component"""
|
56 |
+
mycomponent = components.declare_component(
|
57 |
+
"mycomponent",
|
58 |
+
path="mycomponent"
|
59 |
+
)
|
60 |
+
return mycomponent
|
61 |
+
|
62 |
+
# Utility Functions
|
63 |
+
def clean_for_speech(text: str) -> str:
|
64 |
+
"""Clean text for speech synthesis"""
|
65 |
+
text = text.replace("\n", " ")
|
66 |
+
text = text.replace("</s>", " ")
|
67 |
+
text = text.replace("#", "")
|
68 |
+
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
|
69 |
+
text = re.sub(r"\s+", " ", text).strip()
|
70 |
+
return text
|
71 |
+
|
72 |
+
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
73 |
+
"""Generate audio using Edge TTS"""
|
74 |
+
text = clean_for_speech(text)
|
75 |
+
if not text.strip():
|
76 |
+
return None
|
77 |
+
rate_str = f"{rate:+d}%"
|
78 |
+
pitch_str = f"{pitch:+d}Hz"
|
79 |
+
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
80 |
+
out_fn = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
|
81 |
+
await communicate.save(out_fn)
|
82 |
+
return out_fn
|
83 |
+
|
84 |
+
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
85 |
+
"""Wrapper for edge TTS generation"""
|
86 |
+
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
|
87 |
+
|
88 |
+
def play_and_download_audio(file_path):
|
89 |
+
"""Play and provide download link for audio"""
|
90 |
+
if file_path and os.path.exists(file_path):
|
91 |
+
st.audio(file_path)
|
92 |
+
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
|
93 |
+
st.markdown(dl_link, unsafe_allow_html=True)
|
94 |
+
|
95 |
+
@st.cache_resource
|
96 |
+
def get_model():
|
97 |
+
"""Get sentence transformer model"""
|
98 |
+
return SentenceTransformer('all-MiniLM-L6-v2')
|
99 |
+
|
100 |
+
@st.cache_data
|
101 |
+
def load_dataset_page(dataset_id, token, page, rows_per_page):
|
102 |
+
"""Load dataset page with caching"""
|
103 |
+
try:
|
104 |
+
start_idx = page * rows_per_page
|
105 |
+
end_idx = start_idx + rows_per_page
|
106 |
+
dataset = load_dataset(
|
107 |
+
dataset_id,
|
108 |
+
token=token,
|
109 |
+
streaming=False,
|
110 |
+
split=f'train[{start_idx}:{end_idx}]'
|
111 |
+
)
|
112 |
+
return pd.DataFrame(dataset)
|
113 |
+
except Exception as e:
|
114 |
+
st.error(f"Error loading page {page}: {str(e)}")
|
115 |
+
return pd.DataFrame()
|
116 |
+
|
117 |
+
@st.cache_data
|
118 |
+
def get_dataset_info(dataset_id, token):
|
119 |
+
"""Get dataset info with caching"""
|
120 |
+
try:
|
121 |
+
dataset = load_dataset(dataset_id, token=token, streaming=True)
|
122 |
+
return dataset['train'].info
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Error loading dataset info: {str(e)}")
|
125 |
+
return None
|
126 |
+
|
127 |
+
def fetch_dataset_info(dataset_id):
|
128 |
+
"""Fetch dataset information"""
|
129 |
+
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
|
130 |
+
try:
|
131 |
+
response = requests.get(info_url, timeout=30)
|
132 |
+
if response.status_code == 200:
|
133 |
+
return response.json()
|
134 |
+
except Exception as e:
|
135 |
+
st.warning(f"Error fetching dataset info: {e}")
|
136 |
+
return None
|
137 |
+
|
138 |
+
def generate_filename(text):
|
139 |
+
"""Generate unique filename from text"""
|
140 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
141 |
+
safe_text = re.sub(r'[^\w\s-]', '', text[:50]).strip().lower()
|
142 |
+
safe_text = re.sub(r'[-\s]+', '-', safe_text)
|
143 |
+
return f"{timestamp}_{safe_text}"
|
144 |
+
|
145 |
+
def render_result(result):
|
146 |
+
"""Render a single search result"""
|
147 |
+
score = result.get('relevance_score', 0)
|
148 |
+
result_filtered = {k: v for k, v in result.items()
|
149 |
+
if k not in ['relevance_score', 'video_embed', 'description_embed', 'audio_embed']}
|
150 |
+
|
151 |
+
if 'youtube_id' in result:
|
152 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
|
153 |
+
|
154 |
+
cols = st.columns([2, 1])
|
155 |
+
with cols[0]:
|
156 |
+
text_content = []
|
157 |
+
for key, value in result_filtered.items():
|
158 |
+
if isinstance(value, (str, int, float)):
|
159 |
+
st.write(f"**{key}:** {value}")
|
160 |
+
if isinstance(value, str) and len(value.strip()) > 0:
|
161 |
+
text_content.append(f"{key}: {value}")
|
162 |
+
|
163 |
+
with cols[1]:
|
164 |
+
st.metric("Relevance", f"{score:.2%}")
|
165 |
+
|
166 |
+
voices = {
|
167 |
+
"Aria (US Female)": "en-US-AriaNeural",
|
168 |
+
"Guy (US Male)": "en-US-GuyNeural",
|
169 |
+
"Sonia (UK Female)": "en-GB-SoniaNeural",
|
170 |
+
"Tony (UK Male)": "en-GB-TonyNeural"
|
171 |
+
}
|
172 |
+
|
173 |
+
selected_voice = st.selectbox(
|
174 |
+
"Voice:",
|
175 |
+
list(voices.keys()),
|
176 |
+
key=f"voice_{result.get('video_id', '')}"
|
177 |
+
)
|
178 |
+
|
179 |
+
if st.button("π Read", key=f"read_{result.get('video_id', '')}"):
|
180 |
+
text_to_read = ". ".join(text_content)
|
181 |
+
audio_file = speak_with_edge_tts(text_to_read, voices[selected_voice])
|
182 |
+
if audio_file:
|
183 |
+
play_and_download_audio(audio_file)
|
184 |
+
|
185 |
+
class FastDatasetSearcher:
|
186 |
+
"""Fast dataset search with semantic and token matching"""
|
187 |
+
|
188 |
+
def __init__(self, dataset_id="tomg-group-umd/cinepile"):
|
189 |
+
self.dataset_id = dataset_id
|
190 |
+
self.text_model = get_model()
|
191 |
+
self.token = os.environ.get('DATASET_KEY')
|
192 |
+
if not self.token:
|
193 |
+
st.error("Please set the DATASET_KEY environment variable")
|
194 |
+
st.stop()
|
195 |
+
|
196 |
+
if st.session_state['dataset_info'] is None:
|
197 |
+
st.session_state['dataset_info'] = get_dataset_info(self.dataset_id, self.token)
|
198 |
+
|
199 |
+
def load_page(self, page=0):
|
200 |
+
"""Load a specific page of data"""
|
201 |
+
return load_dataset_page(self.dataset_id, self.token, page, ROWS_PER_PAGE)
|
202 |
+
|
203 |
+
def quick_search(self, query, df):
|
204 |
+
"""Perform quick search with semantic similarity"""
|
205 |
+
if df.empty or not query.strip():
|
206 |
+
return df
|
207 |
+
|
208 |
+
try:
|
209 |
+
searchable_cols = []
|
210 |
+
for col in df.columns:
|
211 |
+
sample_val = df[col].iloc[0]
|
212 |
+
if not isinstance(sample_val, (np.ndarray, bytes)):
|
213 |
+
searchable_cols.append(col)
|
214 |
+
|
215 |
+
query_lower = query.lower()
|
216 |
+
query_terms = set(query_lower.split())
|
217 |
+
query_embedding = self.text_model.encode([query], show_progress_bar=False)[0]
|
218 |
+
|
219 |
+
scores = []
|
220 |
+
matched_any = []
|
221 |
+
|
222 |
+
for _, row in df.iterrows():
|
223 |
+
text_parts = []
|
224 |
+
row_matched = False
|
225 |
+
exact_match = False
|
226 |
+
|
227 |
+
priority_fields = ['description', 'matched_text']
|
228 |
+
other_fields = [col for col in searchable_cols if col not in priority_fields]
|
229 |
+
|
230 |
+
for col in priority_fields:
|
231 |
+
if col in row:
|
232 |
+
val = row[col]
|
233 |
+
if val is not None:
|
234 |
+
val_str = str(val).lower()
|
235 |
+
if query_lower in val_str.split():
|
236 |
+
exact_match = True
|
237 |
+
if any(term in val_str.split() for term in query_terms):
|
238 |
+
row_matched = True
|
239 |
+
text_parts.append(str(val))
|
240 |
+
|
241 |
+
for col in other_fields:
|
242 |
+
val = row[col]
|
243 |
+
if val is not None:
|
244 |
+
val_str = str(val).lower()
|
245 |
+
if query_lower in val_str.split():
|
246 |
+
exact_match = True
|
247 |
+
if any(term in val_str.split() for term in query_terms):
|
248 |
+
row_matched = True
|
249 |
+
text_parts.append(str(val))
|
250 |
+
|
251 |
+
text = ' '.join(text_parts)
|
252 |
+
|
253 |
+
if text.strip():
|
254 |
+
text_tokens = set(text.lower().split())
|
255 |
+
matching_terms = query_terms.intersection(text_tokens)
|
256 |
+
keyword_score = len(matching_terms) / len(query_terms)
|
257 |
+
|
258 |
+
text_embedding = self.text_model.encode([text], show_progress_bar=False)[0]
|
259 |
+
semantic_score = float(cosine_similarity([query_embedding], [text_embedding])[0][0])
|
260 |
+
|
261 |
+
combined_score = 0.7 * keyword_score + 0.3 * semantic_score
|
262 |
+
|
263 |
+
if exact_match:
|
264 |
+
combined_score *= EXACT_MATCH_BOOST
|
265 |
+
elif row_matched:
|
266 |
+
combined_score *= 1.2
|
267 |
+
else:
|
268 |
+
combined_score = 0.0
|
269 |
+
row_matched = False
|
270 |
+
|
271 |
+
scores.append(combined_score)
|
272 |
+
matched_any.append(row_matched)
|
273 |
+
|
274 |
+
results_df = df.copy()
|
275 |
+
results_df['score'] = scores
|
276 |
+
results_df['matched'] = matched_any
|
277 |
+
|
278 |
+
filtered_df = results_df[
|
279 |
+
(results_df['matched']) |
|
280 |
+
(results_df['score'] > MIN_SEARCH_SCORE)
|
281 |
+
]
|
282 |
+
|
283 |
+
return filtered_df.sort_values('score', ascending=False)
|
284 |
+
|
285 |
+
except Exception as e:
|
286 |
+
st.error(f"Search error: {str(e)}")
|
287 |
+
return df
|
288 |
+
|
289 |
+
def main():
|
290 |
+
st.title("π₯ Smart Video & Voice Search")
|
291 |
+
|
292 |
+
# Initialize components
|
293 |
+
voice_component = create_voice_component()
|
294 |
+
search = FastDatasetSearcher()
|
295 |
+
|
296 |
+
# Voice input at top level
|
297 |
+
voice_val = voice_component(my_input_value="Start speaking...")
|
298 |
+
|
299 |
+
# Show voice input if detected
|
300 |
+
if voice_val:
|
301 |
+
voice_text = str(voice_val).strip()
|
302 |
+
edited_input = st.text_area("βοΈ Edit Voice Input:", value=voice_text, height=100)
|
303 |
+
|
304 |
+
run_option = st.selectbox("Select Search Type:",
|
305 |
+
["Quick Search", "Deep Search", "Voice Summary"])
|
306 |
+
|
307 |
+
col1, col2 = st.columns(2)
|
308 |
+
with col1:
|
309 |
+
autorun = st.checkbox("β‘ Auto-Run", value=False)
|
310 |
+
with col2:
|
311 |
+
full_audio = st.checkbox("π Full Audio", value=False)
|
312 |
+
|
313 |
+
input_changed = (voice_text != st.session_state.get('old_val'))
|
314 |
+
|
315 |
+
if autorun and input_changed:
|
316 |
+
st.session_state['old_val'] = voice_text
|
317 |
+
with st.spinner("Processing voice input..."):
|
318 |
+
if run_option == "Quick Search":
|
319 |
+
results = search.quick_search(edited_input, search.load_page())
|
320 |
+
for i, result in enumerate(results.iterrows(), 1):
|
321 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
322 |
+
render_result(result[1])
|
323 |
+
|
324 |
+
elif run_option == "Deep Search":
|
325 |
+
with st.spinner("Performing deep search..."):
|
326 |
+
results = []
|
327 |
+
for page in range(3): # Search first 3 pages
|
328 |
+
df = search.load_page(page)
|
329 |
+
results.extend(search.quick_search(edited_input, df).iterrows())
|
330 |
+
|
331 |
+
for i, result in enumerate(results, 1):
|
332 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
333 |
+
render_result(result[1])
|
334 |
+
|
335 |
+
elif run_option == "Voice Summary":
|
336 |
+
audio_file = speak_with_edge_tts(edited_input)
|
337 |
+
if audio_file:
|
338 |
+
play_and_download_audio(audio_file)
|
339 |
+
|
340 |
+
elif st.button("π Search", key="voice_input_search"):
|
341 |
+
st.session_state['old_val'] = voice_text
|
342 |
+
with st.spinner("Processing..."):
|
343 |
+
results = search.quick_search(edited_input, search.load_page())
|
344 |
+
for i, result in enumerate(results.iterrows(), 1):
|
345 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
346 |
+
render_result(result[1])
|
347 |
+
|
348 |
+
# Create main tabs
|
349 |
+
tab1, tab2, tab3, tab4 = st.tabs([
|
350 |
+
"π Search", "ποΈ Voice", "πΎ History", "βοΈ Settings"
|
351 |
+
])
|
352 |
+
|
353 |
+
with tab1:
|
354 |
+
st.subheader("π Search")
|
355 |
+
col1, col2 = st.columns([3, 1])
|
356 |
+
with col1:
|
357 |
+
query = st.text_input("Enter search query:",
|
358 |
+
value="" if st.session_state['initial_search_done'] else "")
|
359 |
+
with col2:
|
360 |
+
search_column = st.selectbox("Search in:",
|
361 |
+
["All Fields"] + st.session_state['search_columns'])
|
362 |
+
|
363 |
+
col3, col4 = st.columns(2)
|
364 |
+
with col3:
|
365 |
+
num_results = st.slider("Max results:", 1, 100, 20)
|
366 |
+
with col4:
|
367 |
+
search_button = st.button("π Search", key="main_search_button")
|
368 |
+
|
369 |
+
if (search_button or not st.session_state['initial_search_done']) and query:
|
370 |
+
st.session_state['initial_search_done'] = True
|
371 |
+
selected_column = None if search_column == "All Fields" else search_column
|
372 |
+
|
373 |
+
with st.spinner("Searching..."):
|
374 |
+
df = search.load_page()
|
375 |
+
results = search.quick_search(query, df)
|
376 |
+
|
377 |
+
if len(results) > 0:
|
378 |
+
st.session_state['search_history'].append({
|
379 |
+
'query': query,
|
380 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
381 |
+
'results': results[:5]
|
382 |
+
})
|
383 |
+
|
384 |
+
st.write(f"Found {len(results)} results:")
|
385 |
+
for i, (_, result) in enumerate(results.iterrows(), 1):
|
386 |
+
if i > num_results:
|
387 |
+
break
|
388 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
389 |
+
render_result(result)
|
390 |
+
else:
|
391 |
+
st.warning("No matching results found.")
|
392 |
+
|
393 |
+
with tab2:
|
394 |
+
st.subheader("ποΈ Voice Input")
|
395 |
+
st.write("Use the voice input above to start speaking, or record a new message:")
|
396 |
+
|
397 |
+
col1, col2 = st.columns(2)
|
398 |
+
with col1:
|
399 |
+
if st.button("ποΈ Start New Recording", key="start_recording_button"):
|
400 |
+
st.session_state['recording'] = True
|
401 |
+
st.experimental_rerun()
|
402 |
+
with col2:
|
403 |
+
if st.button("π Stop Recording", key="stop_recording_button"):
|
404 |
+
st.session_state['recording'] = False
|
405 |
+
st.experimental_rerun()
|
406 |
+
|
407 |
+
if st.session_state.get('recording', False):
|
408 |
+
voice_component = create_voice_component()
|
409 |
+
new_val = voice_component(my_input_value="Recording...")
|
410 |
+
if new_val:
|
411 |
+
st.text_area("Recorded Text:", value=new_val, height=100)
|
412 |
+
if st.button("π Search with Recording", key="recording_search_button"):
|
413 |
+
with st.spinner("Processing recording..."):
|
414 |
+
df = search.load_page()
|
415 |
+
results = search.quick_search(new_val, df)
|
416 |
+
for i, (_, result) in enumerate(results.iterrows(), 1):
|
417 |
+
with st.expander(f"Result {i}", expanded=(i==1)):
|
418 |
+
render_result(result)
|
419 |
+
|
420 |
+
with tab3:
|
421 |
+
st.subheader("πΎ Search History")
|
422 |
+
if not st.session_state['search_history']:
|
423 |
+
st.info("No search history yet. Try searching for something!")
|
424 |
+
else:
|
425 |
+
for entry in reversed(st.session_state['search_history']):
|
426 |
+
with st.expander(f"π {entry['timestamp']} - {entry['query']}", expanded=False):
|
427 |
+
for i, result in enumerate(entry['results'], 1):
|
428 |
+
st.write(f"**Result {i}:**")
|
429 |
+
if isinstance(result, pd.Series):
|
430 |
+
render_result(result)
|
431 |
+
else:
|
432 |
+
st.write(result)
|
433 |
+
|
434 |
+
with tab4:
|
435 |
+
st.subheader("βοΈ Settings")
|
436 |
+
st.write("Voice Settings:")
|
437 |
+
default_voice = st.selectbox(
|
438 |
+
"Default Voice:",
|
439 |
+
[
|
440 |
+
"en-US-AriaNeural",
|
441 |
+
"en-US-GuyNeural",
|
442 |
+
"en-GB-SoniaNeural",
|
443 |
+
"en-GB-TonyNeural"
|
444 |
+
],
|
445 |
+
index=0,
|
446 |
+
key="default_voice_setting"
|
447 |
+
)
|
448 |
+
|
449 |
+
st.write("Search Settings:")
|
450 |
+
st.slider("Minimum Search Score:", 0.0, 1.0, MIN_SEARCH_SCORE, 0.1, key="min_search_score")
|
451 |
+
st.slider("Exact Match Boost:", 1.0, 3.0, EXACT_MATCH_BOOST, 0.1, key="exact_match_boost")
|
452 |
+
|
453 |
+
if st.button("ποΈ Clear Search History", key="clear_history_button"):
|
454 |
+
st.session_state['search_history'] = []
|
455 |
+
st.success("Search history cleared!")
|
456 |
+
st.experimental_rerun()
|
457 |
+
|
458 |
+
# Sidebar with metrics
|
459 |
+
with st.sidebar:
|
460 |
+
st.subheader("π Search Metrics")
|
461 |
+
total_searches = len(st.session_state['search_history'])
|
462 |
+
st.metric("Total Searches", total_searches)
|
463 |
+
|
464 |
+
if total_searches > 0:
|
465 |
+
recent_searches = st.session_state['search_history'][-5:]
|
466 |
+
st.write("Recent Searches:")
|
467 |
+
for entry in reversed(recent_searches):
|
468 |
+
st.write(f"π {entry['query']}")
|
469 |
+
|
470 |
+
if __name__ == "__main__":
|
471 |
+
main()
|