CodeCompetitionClaudeVsGPT / backup5.app.py
awacke1's picture
Rename app.py to backup5.app.py
46076c4 verified
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import requests
from collections import defaultdict
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
from urllib.parse import quote
from xml.etree import ElementTree as ET
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'search_columns' not in st.session_state:
st.session_state['search_columns'] = []
if 'initial_search_done' not in st.session_state:
st.session_state['initial_search_done'] = False
if 'tts_voice' not in st.session_state:
st.session_state['tts_voice'] = "en-US-AriaNeural"
if 'arxiv_last_query' not in st.session_state:
st.session_state['arxiv_last_query'] = ""
def fetch_dataset_info(dataset_id):
"""Fetch dataset information including all available configs and splits"""
info_url = f"https://huggingface.co/api/datasets/{dataset_id}"
try:
response = requests.get(info_url, timeout=30)
if response.status_code == 200:
return response.json()
except Exception as e:
st.warning(f"Error fetching dataset info: {e}")
return None
def fetch_dataset_rows(dataset_id, config="default", split="train", max_rows=100):
"""Fetch rows from a specific config and split of a dataset"""
url = f"https://datasets-server.huggingface.co/first-rows?dataset={dataset_id}&config={config}&split={split}"
try:
response = requests.get(url, timeout=30)
if response.status_code == 200:
data = response.json()
if 'rows' in data:
processed_rows = []
for row_data in data['rows']:
row = row_data.get('row', row_data)
# Process embeddings if present
for key in row:
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']):
if isinstance(row[key], str):
try:
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()]
except:
continue
row['_config'] = config
row['_split'] = split
processed_rows.append(row)
return processed_rows
except Exception as e:
st.warning(f"Error fetching rows for {config}/{split}: {e}")
return []
def search_dataset(dataset_id, search_text, include_configs=None, include_splits=None):
"""
Search across all configurations and splits of a dataset
Args:
dataset_id (str): The Hugging Face dataset ID
search_text (str): Text to search for in descriptions and queries
include_configs (list): List of specific configs to search, or None for all
include_splits (list): List of specific splits to search, or None for all
Returns:
tuple: (DataFrame of results, list of available configs, list of available splits)
"""
# Get dataset info
dataset_info = fetch_dataset_info(dataset_id)
if not dataset_info:
return pd.DataFrame(), [], []
# Get available configs and splits
configs = include_configs if include_configs else dataset_info.get('config_names', ['default'])
all_rows = []
available_splits = set()
# Search across configs and splits
for config in configs:
try:
# First fetch split info for this config
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
splits_response = requests.get(splits_url, timeout=30)
if splits_response.status_code == 200:
splits_data = splits_response.json()
splits = [split['split'] for split in splits_data.get('splits', [])]
if not splits:
splits = ['train'] # fallback to train if no splits found
# Filter splits if specified
if include_splits:
splits = [s for s in splits if s in include_splits]
available_splits.update(splits)
# Fetch and search rows for each split
for split in splits:
rows = fetch_dataset_rows(dataset_id, config, split)
for row in rows:
# Search in all text fields
text_content = ' '.join(str(v) for v in row.values() if isinstance(v, (str, int, float)))
if search_text.lower() in text_content.lower():
row['_matched_text'] = text_content
row['_relevance_score'] = text_content.lower().count(search_text.lower())
all_rows.append(row)
except Exception as e:
st.warning(f"Error processing config {config}: {e}")
continue
# Convert to DataFrame and sort by relevance
if all_rows:
df = pd.DataFrame(all_rows)
df = df.sort_values('_relevance_score', ascending=False)
return df, configs, list(available_splits)
return pd.DataFrame(), configs, list(available_splits)
class VideoSearch:
def __init__(self):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.dataset_id = "omegalabsinc/omega-multimodal"
self.load_dataset()
def fetch_dataset_rows(self):
"""Fetch dataset with enhanced search capabilities"""
try:
# First try to get all available data
df, configs, splits = search_dataset(
self.dataset_id,
"", # empty search text to get all data
include_configs=None, # all configs
include_splits=None # all splits
)
if not df.empty:
st.session_state['search_columns'] = [col for col in df.columns
if col not in ['video_embed', 'description_embed', 'audio_embed']
and not col.startswith('_')]
return df
return self.load_example_data()
except Exception as e:
st.warning(f"Error loading dataset: {e}")
return self.load_example_data()
def load_example_data(self):
"""Load example data as fallback"""
example_data = [
{
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
"youtube_id": "IO-vwtyicn4",
"description": "This video shows a close-up of an ancient text carved into a surface.",
"views": 45489,
"start_time": 1452,
"end_time": 1458,
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
}
]
return pd.DataFrame(example_data)
def prepare_features(self):
"""Prepare embeddings with adaptive field detection"""
try:
embed_cols = [col for col in self.dataset.columns
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])]
embeddings = {}
for col in embed_cols:
try:
data = []
for row in self.dataset[col]:
if isinstance(row, str):
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()]
elif isinstance(row, list):
values = row
else:
continue
data.append(values)
if data:
embeddings[col] = np.array(data)
except:
continue
# Set main embeddings for search
if 'video_embed' in embeddings:
self.video_embeds = embeddings['video_embed']
else:
self.video_embeds = next(iter(embeddings.values()))
if 'description_embed' in embeddings:
self.text_embeds = embeddings['description_embed']
else:
self.text_embeds = self.video_embeds
except:
# Fallback to random embeddings
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
def load_dataset(self):
self.dataset = self.fetch_dataset_rows()
self.prepare_features()
def search(self, query, column=None, top_k=20):
query_embedding = self.text_model.encode([query])[0]
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
combined_sims = 0.5 * video_sims + 0.5 * text_sims
# Column filtering
if column and column in self.dataset.columns and column != "All Fields":
mask = self.dataset[column].astype(str).str.contains(query, case=False)
combined_sims[~mask] *= 0.5
top_k = min(top_k, 100)
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
results = []
for idx in top_indices:
result = {'relevance_score': float(combined_sims[idx])}
for col in self.dataset.columns:
if col not in ['video_embed', 'description_embed', 'audio_embed']:
result[col] = self.dataset.iloc[idx][col]
results.append(result)
return results
@st.cache_resource
def get_speech_model():
return edge_tts.Communicate
async def generate_speech(text, voice=None):
if not text.strip():
return None
if not voice:
voice = st.session_state['tts_voice']
try:
communicate = get_speech_model()(text, voice)
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(audio_file)
return audio_file
except Exception as e:
st.error(f"Error generating speech: {e}")
return None
def transcribe_audio(audio_path):
"""Placeholder for ASR transcription"""
return "ASR not implemented. Integrate a local model or another service here."
def show_file_manager():
"""Display file manager interface"""
st.subheader("πŸ“‚ File Manager")
col1, col2 = st.columns(2)
with col1:
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3'])
if uploaded_file:
with open(uploaded_file.name, "wb") as f:
f.write(uploaded_file.getvalue())
st.success(f"Uploaded: {uploaded_file.name}")
st.experimental_rerun()
with col2:
if st.button("πŸ—‘ Clear All Files"):
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"):
os.remove(f)
st.success("All files cleared!")
st.experimental_rerun()
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3")
if files:
st.write("### Existing Files")
for f in files:
with st.expander(f"πŸ“„ {os.path.basename(f)}"):
if f.endswith('.mp3'):
st.audio(f)
else:
with open(f, 'r', encoding='utf-8') as file:
st.text_area("Content", file.read(), height=100)
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"):
os.remove(f)
st.experimental_rerun()
def arxiv_search(query, max_results=5):
"""Perform a simple Arxiv search using their API and return top results."""
base_url = "http://export.arxiv.org/api/query?"
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}"
r = requests.get(search_url)
if r.status_code == 200:
root = ET.fromstring(r.text)
ns = {'atom': 'http://www.w3.org/2005/Atom'}
entries = root.findall('atom:entry', ns)
results = []
for entry in entries:
title = entry.find('atom:title', ns).text.strip()
summary = entry.find('atom:summary', ns).text.strip()
link = None
for l in entry.findall('atom:link', ns):
if l.get('type') == 'text/html':
link = l.get('href')
break
results.append((title, summary, link))
return results
return []
def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False):
results = arxiv_search(q, max_results=5)
if not results:
st.write("No Arxiv results found.")
return
st.markdown(f"**Arxiv Search Results for '{q}':**")
for i, (title, summary, link) in enumerate(results, start=1):
st.markdown(f"**{i}. {title}**")
st.write(summary)
if link:
st.markdown(f"[View Paper]({link})")
if vocal_summary:
spoken_text = f"Here are some Arxiv results for {q}. "
if titles_summary:
spoken_text += " Titles: " + ", ".join([res[0] for res in results])
else:
# Just first summary if no titles_summary
spoken_text += " " + results[0][1][:200]
audio_file = asyncio.run(generate_speech(spoken_text))
if audio_file:
st.audio(audio_file)
if full_audio:
# Full audio of summaries
full_text = ""
for i,(title, summary, _) in enumerate(results, start=1):
full_text += f"Result {i}: {title}. {summary} "
audio_file_full = asyncio.run(generate_speech(full_text))
if audio_file_full:
st.write("### Full Audio")
st.audio(audio_file_full)
def main():
st.title("πŸŽ₯ Video & Arxiv Search with Voice (No OpenAI/Anthropic)")
# Initialize search class
search = VideoSearch()
# Create tabs
tab1, tab2, tab3, tab4, tab5 = st.tabs(["πŸ” Search", "πŸŽ™οΈ Voice Input", "πŸ“š Arxiv", "πŸ“‚ Files", "πŸ” Advanced Search"])
# ---- Tab 1: Video Search ----
with tab1:
st.subheader("Search Videos")
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Enter your search query:",
value="ancient" if not st.session_state['initial_search_done'] else "")
with col2:
search_column = st.selectbox("Search in field:",
["All Fields"] + st.session_state['search_columns'])
col3, col4 = st.columns(2)
with col3:
num_results = st.slider("Number of results:", 1, 100, 20)
with col4:
search_button = st.button("πŸ” Search")
if (search_button or not st.session_state['initial_search_done']) and query:
st.session_state['initial_search_done'] = True
selected_column = None if search_column == "All Fields" else search_column
with st.spinner("Searching..."):
results = search.search(query, selected_column, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results[:5]
})
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)):
cols = st.columns([2, 1])
with cols[0]:
st.markdown("**Description:**")
st.write(result['description'])
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
st.markdown(f"**Views:** {result['views']:,}")
with cols[1]:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
if st.button(f"πŸ”Š Audio Summary", key=f"audio_{i}"):
summary = f"Video summary: {result['description'][:200]}"
audio_file = asyncio.run(generate_speech(summary))
if audio_file:
st.audio(audio_file)
# ---- Tab 2: Voice Input ----
with tab2:
st.subheader("Voice Input")
st.write("πŸŽ™οΈ Record your voice:")
audio_bytes = audio_recorder()
if audio_bytes:
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
with open(audio_path, "wb") as f:
f.write(audio_bytes)
st.success("Audio recorded successfully!")
voice_query = transcribe_audio(audio_path)
st.markdown("**Transcribed Text:**")
st.write(voice_query)
st.session_state['last_voice_input'] = voice_query
if st.button("πŸ” Search from Voice"):
results = search.search(voice_query, None, 20)
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}", expanded=(i==1)):
st.write(result['description'])
if result.get('youtube_id'):
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}")
if os.path.exists(audio_path):
os.remove(audio_path)
# ---- Tab 3: Arxiv Search ----
with tab3:
st.subheader("Arxiv Search")
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query'])
vocal_summary = st.checkbox("πŸŽ™ Short Audio Summary", value=True)
titles_summary = st.checkbox("πŸ”– Titles Only", value=True)
full_audio = st.checkbox("πŸ“š Full Audio Results", value=False)
if st.button("πŸ” Arxiv Search"):
st.session_state['arxiv_last_query'] = q
perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio)
# ---- Tab 4: File Manager ----
with tab4:
show_file_manager()
# ---- Tab 5: Advanced Dataset Search ----
with tab5:
st.subheader("Advanced Dataset Search")
# Dataset input
dataset_id = st.text_input("Dataset ID:", value="omegalabsinc/omega-multimodal")
# Search configuration
col1, col2 = st.columns([2, 1])
with col1:
search_text = st.text_input("Search text:",
placeholder="Enter text to search across all fields")
# Get available configs and splits
if dataset_id:
dataset_info = fetch_dataset_info(dataset_id)
if dataset_info:
configs = dataset_info.get('config_names', ['default'])
with col2:
selected_configs = st.multiselect(
"Configurations:",
options=configs,
default=['default'] if 'default' in configs else None
)
# Fetch available splits
if selected_configs:
all_splits = set()
for config in selected_configs:
splits_url = f"https://datasets-server.huggingface.co/splits?dataset={dataset_id}&config={config}"
try:
response = requests.get(splits_url, timeout=30)
if response.status_code == 200:
splits_data = response.json()
splits = [split['split'] for split in splits_data.get('splits', [])]
all_splits.update(splits)
except Exception as e:
st.warning(f"Error fetching splits for {config}: {e}")
selected_splits = st.multiselect(
"Splits:",
options=list(all_splits),
default=['train'] if 'train' in all_splits else None
)
if st.button("πŸ” Search Dataset"):
with st.spinner("Searching dataset..."):
results_df, _, _ = search_dataset(
dataset_id,
search_text,
include_configs=selected_configs,
include_splits=selected_splits
)
if not results_df.empty:
st.write(f"Found {len(results_df)} results")
# Display results in expandable sections
for idx, row in results_df.iterrows():
with st.expander(
f"Result {idx+1} (Config: {row['_config']}, Split: {row['_split']}, Score: {row['_relevance_score']})"
):
# Display all fields except internal ones
for col in row.index:
if not col.startswith('_') and not any(
term in col.lower()
for term in ['embed', 'vector', 'encoding']
):
st.write(f"**{col}:** {row[col]}")
# Add buttons for audio/video if available
if 'youtube_id' in row:
st.video(
f"https://youtube.com/watch?v={row['youtube_id']}&t={row.get('start_time', 0)}"
)
else:
st.warning("No results found.")
else:
st.error("Unable to fetch dataset information.")
# Sidebar
with st.sidebar:
st.subheader("βš™οΈ Settings & History")
if st.button("πŸ—‘οΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
with st.expander(f"{entry['timestamp']}: {entry['query']}"):
for i, result in enumerate(entry['results'], 1):
st.write(f"{i}. {result['description'][:100]}...")
st.markdown("### Voice Settings")
st.selectbox("TTS Voice:",
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
key="tts_voice")
if __name__ == "__main__":
main()