|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import torch |
|
import json |
|
import os |
|
import glob |
|
from pathlib import Path |
|
from datetime import datetime |
|
import edge_tts |
|
import asyncio |
|
import base64 |
|
import requests |
|
import plotly.graph_objects as go |
|
from gradio_client import Client |
|
from collections import defaultdict |
|
from bs4 import BeautifulSoup |
|
from audio_recorder_streamlit import audio_recorder |
|
import streamlit.components.v1 as components |
|
|
|
|
|
st.set_page_config( |
|
page_title="Video Search & Research Assistant", |
|
page_icon="π₯", |
|
layout="wide", |
|
initial_sidebar_state="auto", |
|
) |
|
|
|
|
|
if 'search_history' not in st.session_state: |
|
st.session_state['search_history'] = [] |
|
if 'last_voice_input' not in st.session_state: |
|
st.session_state['last_voice_input'] = "" |
|
if 'transcript_history' not in st.session_state: |
|
st.session_state['transcript_history'] = [] |
|
if 'should_rerun' not in st.session_state: |
|
st.session_state['should_rerun'] = False |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } |
|
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; } |
|
.stButton>button { margin-right: 0.5rem; } |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
speech_component = components.declare_component("speech_recognition", path="mycomponent") |
|
|
|
class VideoSearch: |
|
def __init__(self): |
|
self.text_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
self.load_dataset() |
|
|
|
def fetch_dataset_rows(self): |
|
"""Fetch dataset from Hugging Face API with debug and caching""" |
|
try: |
|
st.info("Fetching from Hugging Face API...") |
|
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train" |
|
|
|
response = requests.get(url, timeout=30) |
|
st.write(f"Response status: {response.status_code}") |
|
|
|
if response.status_code == 200: |
|
data = response.json() |
|
|
|
if 'rows' in data: |
|
|
|
processed_rows = [] |
|
for row_data in data['rows']: |
|
if 'row' in row_data: |
|
processed_rows.append(row_data['row']) |
|
|
|
df = pd.DataFrame(processed_rows) |
|
|
|
|
|
st.write("DataFrame columns after processing:", list(df.columns)) |
|
st.write("Number of rows:", len(df)) |
|
|
|
return df |
|
else: |
|
st.error("No 'rows' found in API response") |
|
st.write("Raw API Response:", data) |
|
return self.load_example_data() |
|
else: |
|
st.error(f"API request failed with status code: {response.status_code}") |
|
return self.load_example_data() |
|
|
|
except Exception as e: |
|
st.error(f"Error fetching dataset: {str(e)}") |
|
return self.load_example_data() |
|
|
|
def load_example_data(self): |
|
"""Load example data as fallback""" |
|
example_data = [ |
|
{ |
|
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc", |
|
"youtube_id": "IO-vwtyicn4", |
|
"description": "This video shows a close-up of an ancient text carved into a surface, with the text appearing to be in a cursive script.", |
|
"views": 45489, |
|
"start_time": 1452, |
|
"end_time": 1458, |
|
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774], |
|
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819] |
|
}, |
|
{ |
|
"video_id": "a8ebde7d-d717-4c1e-8be4-bdb4bc0c544f", |
|
"youtube_id": "mo4rEyF7gTE", |
|
"description": "This video shows a close-up view of a classical architectural structure, featuring stone statues with ornate details.", |
|
"views": 4468, |
|
"start_time": 318, |
|
"end_time": 324, |
|
"video_embed": [0.015160037972033024, -0.004111184574663639, -0.017604168340563774], |
|
"description_embed": [-0.06835828185081482, 0.03589797042310238, 0.12952091753482819] |
|
}, |
|
{ |
|
"video_id": "d1be64a6-22e2-4fbd-a176-20749e7c3d8a", |
|
"youtube_id": "IO-vwtyicn4", |
|
"description": "This video shows a weathered ancient painting depicting figures in classical style with vibrant colors preserved.", |
|
"views": 45489, |
|
"start_time": 1698, |
|
"end_time": 1704, |
|
"video_embed": [0.016160037972033024, -0.005111184574663639, -0.018604168340563774], |
|
"description_embed": [-0.07835828185081482, 0.04589797042310238, 0.13952091753482819] |
|
} |
|
] |
|
return pd.DataFrame(example_data) |
|
|
|
def prepare_features(self): |
|
"""Prepare and cache embeddings""" |
|
try: |
|
if 'video_embed' not in self.dataset.columns: |
|
st.warning("Using example data embeddings") |
|
self.dataset = self.load_example_data() |
|
|
|
|
|
st.write("Data Types:", self.dataset.dtypes) |
|
st.write("\nFirst row of embeddings:") |
|
st.write("video_embed type:", type(self.dataset['video_embed'].iloc[0])) |
|
st.write("video_embed content:", self.dataset['video_embed'].iloc[0]) |
|
st.write("\ndescription_embed type:", type(self.dataset['description_embed'].iloc[0])) |
|
st.write("description_embed content:", self.dataset['description_embed'].iloc[0]) |
|
|
|
|
|
def safe_eval_list(s): |
|
try: |
|
|
|
if isinstance(s, str): |
|
s = s.replace('[', '').replace(']', '').strip() |
|
|
|
numbers = [float(x.strip()) for x in s.split() if x.strip()] |
|
return numbers |
|
elif isinstance(s, list): |
|
return [float(x) for x in s] |
|
else: |
|
st.error(f"Unexpected type for embedding: {type(s)}") |
|
return None |
|
except Exception as e: |
|
st.error(f"Error parsing embedding: {str(e)}") |
|
st.write("Problematic string:", s) |
|
return None |
|
|
|
|
|
video_embeds = [] |
|
text_embeds = [] |
|
|
|
for idx in range(len(self.dataset)): |
|
try: |
|
video_embed = safe_eval_list(self.dataset['video_embed'].iloc[idx]) |
|
desc_embed = safe_eval_list(self.dataset['description_embed'].iloc[idx]) |
|
|
|
if video_embed is not None and desc_embed is not None: |
|
video_embeds.append(video_embed) |
|
text_embeds.append(desc_embed) |
|
else: |
|
st.warning(f"Skipping row {idx} due to parsing failure") |
|
except Exception as e: |
|
st.error(f"Error processing row {idx}: {str(e)}") |
|
st.write("Row data:", self.dataset.iloc[idx]) |
|
|
|
if video_embeds and text_embeds: |
|
try: |
|
self.video_embeds = np.array(video_embeds) |
|
self.text_embeds = np.array(text_embeds) |
|
st.success(f"Successfully processed {len(video_embeds)} embeddings") |
|
st.write("Video embeddings shape:", self.video_embeds.shape) |
|
st.write("Text embeddings shape:", self.text_embeds.shape) |
|
except Exception as e: |
|
st.error(f"Error converting to numpy arrays: {str(e)}") |
|
else: |
|
st.warning("No valid embeddings found, using random embeddings") |
|
num_rows = len(self.dataset) |
|
self.video_embeds = np.random.randn(num_rows, 384) |
|
self.text_embeds = np.random.randn(num_rows, 384) |
|
|
|
except Exception as e: |
|
st.error(f"Error preparing features: {str(e)}") |
|
import traceback |
|
st.write("Traceback:", traceback.format_exc()) |
|
|
|
num_rows = len(self.dataset) |
|
self.video_embeds = np.random.randn(num_rows, 384) |
|
self.text_embeds = np.random.randn(num_rows, 384) |
|
|
|
def load_dataset(self): |
|
try: |
|
self.dataset = self.fetch_dataset_rows() |
|
if self.dataset is not None: |
|
self.prepare_features() |
|
else: |
|
self.create_dummy_data() |
|
except Exception as e: |
|
st.error(f"Error loading dataset: {e}") |
|
self.create_dummy_data() |
|
|
|
def prepare_features(self): |
|
try: |
|
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e |
|
for e in self.dataset.video_embed]) |
|
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e |
|
for e in self.dataset.description_embed]) |
|
except Exception as e: |
|
st.error(f"Error preparing features: {e}") |
|
num_rows = len(self.dataset) |
|
self.video_embeds = np.random.randn(num_rows, 384) |
|
self.text_embeds = np.random.randn(num_rows, 384) |
|
|
|
def search(self, query, top_k=5): |
|
query_embedding = self.text_model.encode([query])[0] |
|
|
|
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0] |
|
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0] |
|
|
|
combined_sims = 0.5 * video_sims + 0.5 * text_sims |
|
top_indices = np.argsort(combined_sims)[-top_k:][::-1] |
|
|
|
results = [] |
|
for idx in top_indices: |
|
results.append({ |
|
'video_id': self.dataset.iloc[idx]['video_id'], |
|
'youtube_id': self.dataset.iloc[idx]['youtube_id'], |
|
'description': self.dataset.iloc[idx]['description'], |
|
'start_time': self.dataset.iloc[idx]['start_time'], |
|
'end_time': self.dataset.iloc[idx]['end_time'], |
|
'relevance_score': float(combined_sims[idx]), |
|
'views': self.dataset.iloc[idx]['views'] |
|
}) |
|
return results |
|
|
|
def perform_arxiv_search(query, vocal_summary=True, extended_refs=False): |
|
"""Perform Arxiv search with audio summaries""" |
|
try: |
|
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
refs = client.predict(query, 20, "Semantic Search", |
|
"mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
api_name="/update_with_rag_md")[0] |
|
response = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1", |
|
True, api_name="/ask_llm") |
|
|
|
result = f"### π {query}\n\n{response}\n\n{refs}" |
|
st.markdown(result) |
|
|
|
if vocal_summary: |
|
audio_file = asyncio.run(generate_speech(response[:500])) |
|
if audio_file: |
|
st.audio(audio_file) |
|
os.remove(audio_file) |
|
|
|
return result |
|
except Exception as e: |
|
st.error(f"Error in Arxiv search: {e}") |
|
return None |
|
|
|
async def generate_speech(text, voice="en-US-AriaNeural"): |
|
"""Generate speech using Edge TTS""" |
|
if not text.strip(): |
|
return None |
|
|
|
try: |
|
communicate = edge_tts.Communicate(text, voice) |
|
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" |
|
await communicate.save(audio_file) |
|
return audio_file |
|
except Exception as e: |
|
st.error(f"Error generating speech: {e}") |
|
return None |
|
|
|
def process_audio_input(audio_bytes): |
|
"""Process audio input from recorder""" |
|
if audio_bytes: |
|
|
|
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav" |
|
with open(audio_path, "wb") as f: |
|
f.write(audio_bytes) |
|
|
|
|
|
|
|
st.success("Audio recorded successfully!") |
|
|
|
|
|
if os.path.exists(audio_path): |
|
os.remove(audio_path) |
|
|
|
return True |
|
return False |
|
|
|
def main(): |
|
st.title("π₯ Video Search & Research Assistant") |
|
|
|
|
|
search = VideoSearch() |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["π Video Search", "ποΈ Voice & Audio", "π Arxiv Research"]) |
|
|
|
with tab1: |
|
st.subheader("Search Video Dataset") |
|
|
|
|
|
query = st.text_input("Enter your search query:") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
search_button = st.button("π Search") |
|
with col2: |
|
num_results = st.slider("Number of results:", 1, 10, 5) |
|
|
|
if search_button and query: |
|
results = search.search(query, num_results) |
|
st.session_state['search_history'].append({ |
|
'query': query, |
|
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
'results': results |
|
}) |
|
|
|
for i, result in enumerate(results, 1): |
|
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1): |
|
cols = st.columns([2, 1]) |
|
|
|
with cols[0]: |
|
st.markdown(f"**Full Description:**") |
|
st.write(result['description']) |
|
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s") |
|
st.markdown(f"**Views:** {result['views']:,}") |
|
|
|
with cols[1]: |
|
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}") |
|
if result['youtube_id']: |
|
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") |
|
|
|
|
|
if st.button(f"π Generate Audio Summary", key=f"audio_{i}"): |
|
summary = f"Video summary: {result['description'][:200]}" |
|
audio_file = asyncio.run(generate_speech(summary)) |
|
if audio_file: |
|
st.audio(audio_file) |
|
os.remove(audio_file) |
|
|
|
with tab2: |
|
st.subheader("Voice Input & Audio Recording") |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
st.write("ποΈ Speech Recognition") |
|
voice_input = speech_component() |
|
|
|
if voice_input and voice_input != st.session_state['last_voice_input']: |
|
st.session_state['last_voice_input'] = voice_input |
|
st.markdown("**Transcribed Text:**") |
|
st.write(voice_input) |
|
|
|
if st.button("π Search Videos"): |
|
results = search.search(voice_input, num_results) |
|
for i, result in enumerate(results, 1): |
|
with st.expander(f"Result {i}", expanded=i==1): |
|
st.write(result['description']) |
|
if result['youtube_id']: |
|
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") |
|
|
|
with col2: |
|
st.write("π΅ Audio Recorder") |
|
audio_bytes = audio_recorder() |
|
if audio_bytes: |
|
process_audio_input(audio_bytes) |
|
|
|
with tab3: |
|
st.subheader("Arxiv Research") |
|
arxiv_query = st.text_input("π Research Query:") |
|
|
|
col1, col2 = st.columns(2) |
|
with col1: |
|
vocal_summary = st.checkbox("Generate Audio Summary", value=True) |
|
with col2: |
|
extended_refs = st.checkbox("Include Extended References", value=False) |
|
|
|
if st.button("π Search Arxiv") and arxiv_query: |
|
perform_arxiv_search(arxiv_query, vocal_summary, extended_refs) |
|
|
|
|
|
with st.sidebar: |
|
st.subheader("βοΈ Settings & History") |
|
|
|
if st.button("ποΈ Clear History"): |
|
st.session_state['search_history'] = [] |
|
st.experimental_rerun() |
|
|
|
st.markdown("### Recent Searches") |
|
for entry in reversed(st.session_state['search_history'][-5:]): |
|
st.markdown(f"**{entry['timestamp']}**: {entry['query']}") |
|
|
|
st.markdown("### Voice Settings") |
|
st.selectbox("TTS Voice:", |
|
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"], |
|
key="tts_voice") |
|
|
|
if __name__ == "__main__": |
|
main() |