Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
| import plotly.graph_objects as go | |
| import streamlit.components.v1 as components | |
| from datetime import datetime | |
| from audio_recorder_streamlit import audio_recorder | |
| from bs4 import BeautifulSoup | |
| from collections import defaultdict | |
| from dotenv import load_dotenv | |
| from gradio_client import Client | |
| from huggingface_hub import InferenceClient | |
| from io import BytesIO | |
| from PIL import Image | |
| from PyPDF2 import PdfReader | |
| from urllib.parse import quote | |
| from xml.etree import ElementTree as ET | |
| import extra_streamlit_components as stx | |
| from streamlit.runtime.scriptrunner import get_script_run_ctx | |
| import asyncio | |
| import edge_tts | |
| # -------------------- Configuration -------------------- | |
| st.set_page_config( | |
| page_title="π²CCCGπ Code Competition Claude vs GPT", | |
| page_icon="π²π", | |
| layout="wide", | |
| initial_sidebar_state="auto", | |
| menu_items={ | |
| 'Get Help': 'https://huggingface.co/awacke1', | |
| 'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
| 'About': "π²CCCGπ Code Competition Claude vs GPT" | |
| } | |
| ) | |
| load_dotenv() | |
| USER_NAMES = [ | |
| "Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William" | |
| ] | |
| ENGLISH_VOICES = [ | |
| "en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural", | |
| "en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural", | |
| "en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural" | |
| ] | |
| USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES)) | |
| if 'user_name' not in st.session_state: | |
| st.session_state['user_name'] = USER_NAMES[0] | |
| if 'old_val' not in st.session_state: | |
| st.session_state['old_val'] = None | |
| if 'viewing_prefix' not in st.session_state: | |
| st.session_state['viewing_prefix'] = None | |
| if 'should_rerun' not in st.session_state: | |
| st.session_state['should_rerun'] = False | |
| FILE_EMOJIS = { | |
| "md": "π", | |
| "mp3": "π΅", | |
| } | |
| def get_high_info_terms(text: str) -> list: | |
| # Expanded stop words | |
| stop_words = set([ | |
| 'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', | |
| 'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', | |
| 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', | |
| 'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', | |
| 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', | |
| 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', | |
| 'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while' | |
| ]) | |
| # Key phrases tailored to your interests | |
| key_phrases = [ | |
| 'artificial intelligence', 'machine learning', 'deep learning', 'neural networks', | |
| 'natural language processing', 'healthcare systems', 'clinical medicine', | |
| 'genomics', 'biological systems', 'cognitive science', 'data visualization', | |
| 'wellness technology', 'robotics', 'medical imaging', 'semantic understanding', | |
| 'transformers', 'large language models', 'empirical studies', 'scientific research', | |
| 'quantum mechanics', 'biomedical engineering', 'computational biology' | |
| ] | |
| # Preserve key phrases and remove them from the text | |
| preserved_phrases = [] | |
| lower_text = text.lower() | |
| for phrase in key_phrases: | |
| if phrase in lower_text: | |
| preserved_phrases.append(phrase) | |
| text = text.replace(phrase, '') | |
| break # Stop after the first matching key phrase | |
| # Extract words and filter high-info terms | |
| words = re.findall(r'\b\w+(?:-\w+)*\b', text) | |
| high_info_words = [ | |
| word.lower() for word in words | |
| if len(word) > 3 | |
| and word.lower() not in stop_words | |
| and not word.isdigit() | |
| and any(c.isalpha() for c in word) | |
| ] | |
| # Combine preserved phrases and filtered words, ensuring uniqueness | |
| unique_terms = [] | |
| seen = set() | |
| for term in preserved_phrases + high_info_words: | |
| if term not in seen: | |
| seen.add(term) | |
| unique_terms.append(term) | |
| # Return only the top 5 terms | |
| return unique_terms[:5] | |
| def clean_text_for_filename(text: str) -> str: | |
| text = text.lower() | |
| text = re.sub(r'[^\w\s-]', '', text) | |
| words = text.split() | |
| stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) | |
| filtered = [w for w in words if len(w)>3 and w not in stop_short] | |
| return '_'.join(filtered)[:200] | |
| def generate_filename(prompt, response, file_type="md"): | |
| # Adjust timezone to Central Time | |
| central_tz = pytz.timezone('America/Chicago') | |
| central_time = datetime.now(central_tz) | |
| # Format the prefix to include the required format | |
| prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_") # e.g., 12-20-24_11-34-AM_ | |
| combined = (prompt + " " + response).strip() | |
| info_terms = get_high_info_terms(combined) | |
| snippet = (prompt[:100] + " " + response[:100]).strip() | |
| snippet_cleaned = clean_text_for_filename(snippet) | |
| name_parts = info_terms + [snippet_cleaned] | |
| full_name = '_'.join(name_parts) | |
| if len(full_name) > 150: | |
| full_name = full_name[:150] | |
| filename = f"{prefix}{full_name}.{file_type}" | |
| return filename | |
| def create_file(prompt, response, file_type="md"): | |
| filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
| with open(filename, 'w', encoding='utf-8') as f: | |
| f.write(prompt + "\n\n" + response) | |
| return filename | |
| def get_download_link(file): | |
| with open(file, "rb") as f: | |
| b64 = base64.b64encode(f.read()).decode() | |
| return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
| def clean_for_speech(text: str) -> str: | |
| text = text.replace("\n", " ") | |
| text = text.replace("</s>", " ") | |
| text = text.replace("#", "") | |
| text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
| text = re.sub(r"\s+", " ", text).strip() | |
| return text | |
| async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): | |
| text = clean_for_speech(text) | |
| if not text.strip(): | |
| return None | |
| rate_str = f"{rate:+d}%" | |
| pitch_str = f"{pitch:+d}Hz" | |
| communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
| out_fn = generate_filename(text, text, "mp3") | |
| try: | |
| await communicate.save(out_fn) | |
| except edge_tts.exceptions.NoAudioReceived: | |
| st.error("No audio was received from TTS service.") | |
| return None | |
| return out_fn | |
| def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): | |
| return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) | |
| def play_and_download_audio(file_path): | |
| if file_path and os.path.exists(file_path): | |
| st.audio(file_path) | |
| dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>' | |
| st.markdown(dl_link, unsafe_allow_html=True) | |
| def load_files_for_sidebar(): | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files | |
| groups = defaultdict(list) | |
| for f in all_files: | |
| fname = os.path.basename(f) | |
| prefix = fname[:17] | |
| groups[prefix].append(f) | |
| for prefix in groups: | |
| groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) | |
| sorted_prefixes = sorted(groups.keys(), | |
| key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), | |
| reverse=True) | |
| return groups, sorted_prefixes | |
| def extract_keywords_from_md(files): | |
| text = "" | |
| for f in files: | |
| if f.endswith(".md"): | |
| c = open(f,'r',encoding='utf-8').read() | |
| text += " " + c | |
| return get_high_info_terms(text) | |
| def display_file_manager_sidebar(groups, sorted_prefixes): | |
| st.sidebar.title("π΅ Audio & Docs Manager") | |
| all_md = [] | |
| all_mp3 = [] | |
| for prefix in groups: | |
| for f in groups[prefix]: | |
| if f.endswith(".md"): | |
| all_md.append(f) | |
| elif f.endswith(".mp3"): | |
| all_mp3.append(f) | |
| top_bar = st.sidebar.columns(3) | |
| with top_bar[0]: | |
| if st.button("π DelAllMD"): | |
| for f in all_md: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[1]: | |
| if st.button("π DelAllMP3"): | |
| for f in all_mp3: | |
| os.remove(f) | |
| st.session_state.should_rerun = True | |
| with top_bar[2]: | |
| if st.button("β¬οΈ ZipAll"): | |
| z = create_zip_of_files(all_md, all_mp3) | |
| if z: | |
| st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) | |
| for prefix in sorted_prefixes: | |
| files = groups[prefix] | |
| kw = extract_keywords_from_md(files) | |
| keywords_str = " ".join(kw) if kw else "No Keywords" | |
| with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): | |
| c1,c2 = st.columns(2) | |
| with c1: | |
| if st.button("πViewGrp", key="view_group_"+prefix): | |
| st.session_state.viewing_prefix = prefix | |
| with c2: | |
| if st.button("πDelGrp", key="del_group_"+prefix): | |
| for f in files: | |
| os.remove(f) | |
| st.success(f"Deleted group {prefix}!") | |
| st.session_state.should_rerun = True | |
| for f in files: | |
| fname = os.path.basename(f) | |
| ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
| st.write(f"**{fname}** - {ctime}") | |
| def create_zip_of_files(md_files, mp3_files): | |
| md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
| all_files = md_files + mp3_files | |
| if not all_files: | |
| return None | |
| all_content = [] | |
| for f in all_files: | |
| if f.endswith('.md'): | |
| with open(f,'r',encoding='utf-8') as file: | |
| all_content.append(file.read()) | |
| elif f.endswith('.mp3'): | |
| all_content.append(os.path.basename(f)) | |
| combined_content = " ".join(all_content) | |
| info_terms = get_high_info_terms(combined_content) | |
| timestamp = datetime.now().strftime("%y%m_%H%M") | |
| name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) | |
| zip_name = f"{timestamp}_{name_text}.zip" | |
| with zipfile.ZipFile(zip_name,'w') as z: | |
| for f in all_files: | |
| z.write(f) | |
| return zip_name | |
| def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): | |
| """Perform Arxiv search (via your RAG pattern) and generate audio summaries.""" | |
| start = time.time() | |
| client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
| # The next lines call your RAG pipeline | |
| refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0] | |
| r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") | |
| result = f"### π {q}\n\n{r2}\n\n{refs}" | |
| # Audio outputs | |
| if full_audio: | |
| complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}" | |
| audio_file_full = speak_with_edge_tts(complete_text) | |
| if audio_file_full: | |
| st.write("### π Full Audio") | |
| play_and_download_audio(audio_file_full) | |
| if vocal_summary: | |
| main_text = clean_for_speech(r2) | |
| if main_text.strip(): | |
| audio_file_main = speak_with_edge_tts(main_text) | |
| if audio_file_main: | |
| st.write("### π Short Audio") | |
| play_and_download_audio(audio_file_main) | |
| if extended_refs: | |
| summaries_text = "Extended references: " + refs.replace('"','') | |
| summaries_text = clean_for_speech(summaries_text) | |
| if summaries_text.strip(): | |
| audio_file_refs = speak_with_edge_tts(summaries_text) | |
| if audio_file_refs: | |
| st.write("### π Long Refs") | |
| play_and_download_audio(audio_file_refs) | |
| if titles_summary: | |
| titles = [] | |
| for line in refs.split('\n'): | |
| m = re.search(r"\[([^\]]+)\]", line) | |
| if m: | |
| titles.append(m.group(1)) | |
| if titles: | |
| titles_text = "Titles: " + ", ".join(titles) | |
| titles_text = clean_for_speech(titles_text) | |
| if titles_text.strip(): | |
| audio_file_titles = speak_with_edge_tts(titles_text) | |
| if audio_file_titles: | |
| st.write("### π Titles") | |
| play_and_download_audio(audio_file_titles) | |
| # show text last after playback interfaces. For the big one lets add a feature later that breaks into their own. | |
| st.markdown(result) | |
| elapsed = time.time()-start | |
| st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
| create_file(q, result, "md") | |
| return result | |
| def main(): | |
| st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0) | |
| # Display saved files in sidebar | |
| groups, sorted_prefixes = load_files_for_sidebar() | |
| display_file_manager_sidebar(groups, sorted_prefixes) | |
| if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: | |
| st.write("---") | |
| st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") | |
| for f in groups[st.session_state.viewing_prefix]: | |
| fname = os.path.basename(f) | |
| ext = os.path.splitext(fname)[1].lower().strip('.') | |
| st.write(f"### {fname}") | |
| if ext == "md": | |
| content = open(f,'r',encoding='utf-8').read() | |
| st.markdown(content) | |
| elif ext == "mp3": | |
| st.audio(f) | |
| else: | |
| st.markdown(get_download_link(f), unsafe_allow_html=True) | |
| if st.button("β Close"): | |
| st.session_state.viewing_prefix = None | |
| if st.button("ποΈ Clear All History in Sidebar"): | |
| md_files = glob.glob("*.md") | |
| mp3_files = glob.glob("*.mp3") | |
| for f in md_files+mp3_files: | |
| os.remove(f) | |
| st.success("All history cleared!") | |
| st.rerun() | |
| st.title("ποΈ ArXiv Voice Search") | |
| # Voice component | |
| mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
| voice_val = mycomponent(my_input_value="Start speaking...") | |
| tabs = st.tabs(["π€ Voice Chat", "πΎ History", "βοΈ Settings"]) | |
| with tabs[0]: | |
| st.subheader("π€ Voice Chat") | |
| if voice_val: | |
| voice_text = voice_val.strip() | |
| input_changed = (voice_text != st.session_state.get('old_val')) | |
| if input_changed and voice_text: | |
| # Save user input | |
| create_file(st.session_state['user_name'], voice_text, "md") | |
| # Perform ArXiv search automatically | |
| with st.spinner("Searching ArXiv..."): | |
| # Always do vocal_summary = True, extended_refs=False, titles_summary=True, full_audio=False | |
| result = perform_ai_lookup(voice_text, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False) | |
| # Update old_val | |
| st.session_state['old_val'] = voice_text | |
| # Clear the text by rerunning | |
| #st.rerun() | |
| st.write("Speak a query to run an ArXiv search and hear the results.") | |
| with tabs[1]: | |
| st.subheader("πΎ History") | |
| # Show all MD files and allow reading them aloud | |
| md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True) | |
| for i, fpath in enumerate(md_files, start=1): | |
| fname = os.path.basename(fpath) | |
| with open(fpath,'r',encoding='utf-8') as ff: | |
| content = ff.read() | |
| with st.expander(fname, expanded=False): | |
| st.write(content) | |
| if st.button(f"π Read Aloud {fname}", key=f"read_{i}_{fname}"): | |
| voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") | |
| audio_file = speak_with_edge_tts(content, voice=voice) | |
| if audio_file: | |
| play_and_download_audio(audio_file) | |
| if st.button("π Read Entire History"): | |
| all_content = [] | |
| for fpath in sorted(md_files, key=os.path.getmtime): | |
| with open(fpath,'r',encoding='utf-8') as ff: | |
| c = ff.read().strip() | |
| if c: | |
| all_content.append((fpath, c)) | |
| mp3_files = [] | |
| for (fpath, text) in all_content: | |
| voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") | |
| audio_file = speak_with_edge_tts(text, voice=voice) | |
| if audio_file: | |
| mp3_files.append(audio_file) | |
| st.write(f"**{os.path.basename(fpath)}:**") | |
| play_and_download_audio(audio_file) | |
| if mp3_files: | |
| combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" | |
| with open(combined_file, 'wb') as outfile: | |
| for f in mp3_files: | |
| with open(f, 'rb') as infile: | |
| outfile.write(infile.read()) | |
| st.write("**Full Conversation Audio:**") | |
| play_and_download_audio(combined_file) | |
| with tabs[2]: | |
| st.subheader("βοΈ Settings") | |
| st.write("Currently no additional settings.") | |
| if st.session_state.should_rerun: | |
| st.session_state.should_rerun = False | |
| st.rerun() | |
| if __name__=="__main__": | |
| main() | |