|
import streamlit as st |
|
import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile |
|
import plotly.graph_objects as go |
|
import streamlit.components.v1 as components |
|
from datetime import datetime |
|
from audio_recorder_streamlit import audio_recorder |
|
from bs4 import BeautifulSoup |
|
from collections import defaultdict |
|
from dotenv import load_dotenv |
|
from gradio_client import Client |
|
from huggingface_hub import InferenceClient |
|
from io import BytesIO |
|
from PIL import Image |
|
from PyPDF2 import PdfReader |
|
from urllib.parse import quote |
|
from xml.etree import ElementTree as ET |
|
import extra_streamlit_components as stx |
|
from streamlit.runtime.scriptrunner import get_script_run_ctx |
|
import asyncio |
|
import edge_tts |
|
|
|
|
|
st.set_page_config( |
|
page_title="π²CCCGπ Code Competition Claude vs GPT", |
|
page_icon="π²π", |
|
layout="wide", |
|
initial_sidebar_state="auto", |
|
menu_items={ |
|
'Get Help': 'https://huggingface.co/awacke1', |
|
'Report a bug': 'https://huggingface.co/spaces/awacke1', |
|
'About': "π²CCCGπ Code Competition Claude vs GPT" |
|
} |
|
) |
|
load_dotenv() |
|
|
|
USER_NAMES = [ |
|
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William" |
|
] |
|
|
|
ENGLISH_VOICES = [ |
|
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural", |
|
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural", |
|
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural" |
|
] |
|
|
|
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES)) |
|
|
|
if 'user_name' not in st.session_state: |
|
st.session_state['user_name'] = USER_NAMES[0] |
|
if 'old_val' not in st.session_state: |
|
st.session_state['old_val'] = None |
|
if 'viewing_prefix' not in st.session_state: |
|
st.session_state['viewing_prefix'] = None |
|
if 'should_rerun' not in st.session_state: |
|
st.session_state['should_rerun'] = False |
|
|
|
FILE_EMOJIS = { |
|
"md": "π", |
|
"mp3": "π΅", |
|
} |
|
|
|
def get_high_info_terms(text: str) -> list: |
|
|
|
stop_words = set([ |
|
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', |
|
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were', |
|
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', |
|
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these', |
|
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who', |
|
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', |
|
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while' |
|
]) |
|
|
|
|
|
key_phrases = [ |
|
'artificial intelligence', 'machine learning', 'deep learning', 'neural networks', |
|
'natural language processing', 'healthcare systems', 'clinical medicine', |
|
'genomics', 'biological systems', 'cognitive science', 'data visualization', |
|
'wellness technology', 'robotics', 'medical imaging', 'semantic understanding', |
|
'transformers', 'large language models', 'empirical studies', 'scientific research', |
|
'quantum mechanics', 'biomedical engineering', 'computational biology' |
|
] |
|
|
|
|
|
preserved_phrases = [] |
|
lower_text = text.lower() |
|
for phrase in key_phrases: |
|
if phrase in lower_text: |
|
preserved_phrases.append(phrase) |
|
text = text.replace(phrase, '') |
|
break |
|
|
|
|
|
words = re.findall(r'\b\w+(?:-\w+)*\b', text) |
|
high_info_words = [ |
|
word.lower() for word in words |
|
if len(word) > 3 |
|
and word.lower() not in stop_words |
|
and not word.isdigit() |
|
and any(c.isalpha() for c in word) |
|
] |
|
|
|
|
|
unique_terms = [] |
|
seen = set() |
|
for term in preserved_phrases + high_info_words: |
|
if term not in seen: |
|
seen.add(term) |
|
unique_terms.append(term) |
|
|
|
|
|
return unique_terms[:5] |
|
|
|
def clean_text_for_filename(text: str) -> str: |
|
text = text.lower() |
|
text = re.sub(r'[^\w\s-]', '', text) |
|
words = text.split() |
|
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about']) |
|
filtered = [w for w in words if len(w)>3 and w not in stop_short] |
|
return '_'.join(filtered)[:200] |
|
|
|
def generate_filename(prompt, response, file_type="md"): |
|
|
|
central_tz = pytz.timezone('America/Chicago') |
|
central_time = datetime.now(central_tz) |
|
|
|
|
|
prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_") |
|
|
|
combined = (prompt + " " + response).strip() |
|
info_terms = get_high_info_terms(combined) |
|
|
|
snippet = (prompt[:100] + " " + response[:100]).strip() |
|
snippet_cleaned = clean_text_for_filename(snippet) |
|
name_parts = info_terms + [snippet_cleaned] |
|
full_name = '_'.join(name_parts) |
|
|
|
if len(full_name) > 150: |
|
full_name = full_name[:150] |
|
|
|
filename = f"{prefix}{full_name}.{file_type}" |
|
return filename |
|
|
|
def create_file(prompt, response, file_type="md"): |
|
filename = generate_filename(prompt.strip(), response.strip(), file_type) |
|
with open(filename, 'w', encoding='utf-8') as f: |
|
f.write(prompt + "\n\n" + response) |
|
return filename |
|
|
|
def get_download_link(file): |
|
with open(file, "rb") as f: |
|
b64 = base64.b64encode(f.read()).decode() |
|
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' |
|
|
|
def clean_for_speech(text: str) -> str: |
|
text = text.replace("\n", " ") |
|
text = text.replace("</s>", " ") |
|
text = text.replace("#", "") |
|
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) |
|
text = re.sub(r"\s+", " ", text).strip() |
|
return text |
|
|
|
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0): |
|
text = clean_for_speech(text) |
|
if not text.strip(): |
|
return None |
|
rate_str = f"{rate:+d}%" |
|
pitch_str = f"{pitch:+d}Hz" |
|
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) |
|
out_fn = generate_filename(text, text, "mp3") |
|
try: |
|
await communicate.save(out_fn) |
|
except edge_tts.exceptions.NoAudioReceived: |
|
st.error("No audio was received from TTS service.") |
|
return None |
|
return out_fn |
|
|
|
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0): |
|
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch)) |
|
|
|
def play_and_download_audio(file_path): |
|
if file_path and os.path.exists(file_path): |
|
st.audio(file_path) |
|
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>' |
|
st.markdown(dl_link, unsafe_allow_html=True) |
|
|
|
def load_files_for_sidebar(): |
|
md_files = glob.glob("*.md") |
|
mp3_files = glob.glob("*.mp3") |
|
|
|
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] |
|
all_files = md_files + mp3_files |
|
|
|
groups = defaultdict(list) |
|
for f in all_files: |
|
fname = os.path.basename(f) |
|
prefix = fname[:17] |
|
groups[prefix].append(f) |
|
|
|
for prefix in groups: |
|
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True) |
|
|
|
sorted_prefixes = sorted(groups.keys(), |
|
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]), |
|
reverse=True) |
|
return groups, sorted_prefixes |
|
|
|
def extract_keywords_from_md(files): |
|
text = "" |
|
for f in files: |
|
if f.endswith(".md"): |
|
c = open(f,'r',encoding='utf-8').read() |
|
text += " " + c |
|
return get_high_info_terms(text) |
|
|
|
def display_file_manager_sidebar(groups, sorted_prefixes): |
|
st.sidebar.title("π΅ Audio & Docs Manager") |
|
|
|
all_md = [] |
|
all_mp3 = [] |
|
for prefix in groups: |
|
for f in groups[prefix]: |
|
if f.endswith(".md"): |
|
all_md.append(f) |
|
elif f.endswith(".mp3"): |
|
all_mp3.append(f) |
|
|
|
top_bar = st.sidebar.columns(3) |
|
with top_bar[0]: |
|
if st.button("π DelAllMD"): |
|
for f in all_md: |
|
os.remove(f) |
|
st.session_state.should_rerun = True |
|
with top_bar[1]: |
|
if st.button("π DelAllMP3"): |
|
for f in all_mp3: |
|
os.remove(f) |
|
st.session_state.should_rerun = True |
|
with top_bar[2]: |
|
if st.button("β¬οΈ ZipAll"): |
|
z = create_zip_of_files(all_md, all_mp3) |
|
if z: |
|
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True) |
|
|
|
for prefix in sorted_prefixes: |
|
files = groups[prefix] |
|
kw = extract_keywords_from_md(files) |
|
keywords_str = " ".join(kw) if kw else "No Keywords" |
|
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True): |
|
c1,c2 = st.columns(2) |
|
with c1: |
|
if st.button("πViewGrp", key="view_group_"+prefix): |
|
st.session_state.viewing_prefix = prefix |
|
with c2: |
|
if st.button("πDelGrp", key="del_group_"+prefix): |
|
for f in files: |
|
os.remove(f) |
|
st.success(f"Deleted group {prefix}!") |
|
st.session_state.should_rerun = True |
|
|
|
for f in files: |
|
fname = os.path.basename(f) |
|
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") |
|
st.write(f"**{fname}** - {ctime}") |
|
|
|
def create_zip_of_files(md_files, mp3_files): |
|
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] |
|
all_files = md_files + mp3_files |
|
if not all_files: |
|
return None |
|
|
|
all_content = [] |
|
for f in all_files: |
|
if f.endswith('.md'): |
|
with open(f,'r',encoding='utf-8') as file: |
|
all_content.append(file.read()) |
|
elif f.endswith('.mp3'): |
|
all_content.append(os.path.basename(f)) |
|
|
|
combined_content = " ".join(all_content) |
|
info_terms = get_high_info_terms(combined_content) |
|
|
|
timestamp = datetime.now().strftime("%y%m_%H%M") |
|
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3]) |
|
zip_name = f"{timestamp}_{name_text}.zip" |
|
|
|
with zipfile.ZipFile(zip_name,'w') as z: |
|
for f in all_files: |
|
z.write(f) |
|
|
|
return zip_name |
|
|
|
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False): |
|
"""Perform Arxiv search (via your RAG pattern) and generate audio summaries.""" |
|
start = time.time() |
|
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") |
|
|
|
refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0] |
|
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm") |
|
|
|
result = f"### π {q}\n\n{r2}\n\n{refs}" |
|
|
|
|
|
if full_audio: |
|
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}" |
|
audio_file_full = speak_with_edge_tts(complete_text) |
|
if audio_file_full: |
|
st.write("### π Full Audio") |
|
play_and_download_audio(audio_file_full) |
|
|
|
if vocal_summary: |
|
main_text = clean_for_speech(r2) |
|
if main_text.strip(): |
|
audio_file_main = speak_with_edge_tts(main_text) |
|
if audio_file_main: |
|
st.write("### π Short Audio") |
|
play_and_download_audio(audio_file_main) |
|
|
|
if extended_refs: |
|
summaries_text = "Extended references: " + refs.replace('"','') |
|
summaries_text = clean_for_speech(summaries_text) |
|
if summaries_text.strip(): |
|
audio_file_refs = speak_with_edge_tts(summaries_text) |
|
if audio_file_refs: |
|
st.write("### π Long Refs") |
|
play_and_download_audio(audio_file_refs) |
|
|
|
if titles_summary: |
|
titles = [] |
|
for line in refs.split('\n'): |
|
m = re.search(r"\[([^\]]+)\]", line) |
|
if m: |
|
titles.append(m.group(1)) |
|
if titles: |
|
titles_text = "Titles: " + ", ".join(titles) |
|
titles_text = clean_for_speech(titles_text) |
|
if titles_text.strip(): |
|
audio_file_titles = speak_with_edge_tts(titles_text) |
|
if audio_file_titles: |
|
st.write("### π Titles") |
|
play_and_download_audio(audio_file_titles) |
|
|
|
|
|
st.markdown(result) |
|
|
|
elapsed = time.time()-start |
|
st.write(f"**Total Elapsed:** {elapsed:.2f} s") |
|
|
|
create_file(q, result, "md") |
|
|
|
return result |
|
|
|
def main(): |
|
st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0) |
|
|
|
|
|
groups, sorted_prefixes = load_files_for_sidebar() |
|
display_file_manager_sidebar(groups, sorted_prefixes) |
|
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups: |
|
st.write("---") |
|
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}") |
|
for f in groups[st.session_state.viewing_prefix]: |
|
fname = os.path.basename(f) |
|
ext = os.path.splitext(fname)[1].lower().strip('.') |
|
st.write(f"### {fname}") |
|
if ext == "md": |
|
content = open(f,'r',encoding='utf-8').read() |
|
st.markdown(content) |
|
elif ext == "mp3": |
|
st.audio(f) |
|
else: |
|
st.markdown(get_download_link(f), unsafe_allow_html=True) |
|
if st.button("β Close"): |
|
st.session_state.viewing_prefix = None |
|
|
|
if st.button("ποΈ Clear All History in Sidebar"): |
|
md_files = glob.glob("*.md") |
|
mp3_files = glob.glob("*.mp3") |
|
for f in md_files+mp3_files: |
|
os.remove(f) |
|
st.success("All history cleared!") |
|
st.rerun() |
|
|
|
st.title("ποΈ ArXiv Voice Search") |
|
|
|
|
|
mycomponent = components.declare_component("mycomponent", path="mycomponent") |
|
voice_val = mycomponent(my_input_value="Start speaking...") |
|
|
|
tabs = st.tabs(["π€ Voice Chat", "πΎ History", "βοΈ Settings"]) |
|
|
|
with tabs[0]: |
|
st.subheader("π€ Voice Chat") |
|
if voice_val: |
|
voice_text = voice_val.strip() |
|
input_changed = (voice_text != st.session_state.get('old_val')) |
|
if input_changed and voice_text: |
|
|
|
create_file(st.session_state['user_name'], voice_text, "md") |
|
|
|
|
|
with st.spinner("Searching ArXiv..."): |
|
|
|
result = perform_ai_lookup(voice_text, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False) |
|
|
|
|
|
st.session_state['old_val'] = voice_text |
|
|
|
|
|
|
|
st.write("Speak a query to run an ArXiv search and hear the results.") |
|
|
|
with tabs[1]: |
|
st.subheader("πΎ History") |
|
|
|
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True) |
|
for i, fpath in enumerate(md_files, start=1): |
|
fname = os.path.basename(fpath) |
|
with open(fpath,'r',encoding='utf-8') as ff: |
|
content = ff.read() |
|
with st.expander(fname, expanded=False): |
|
st.write(content) |
|
if st.button(f"π Read Aloud {fname}", key=f"read_{i}_{fname}"): |
|
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") |
|
audio_file = speak_with_edge_tts(content, voice=voice) |
|
if audio_file: |
|
play_and_download_audio(audio_file) |
|
|
|
if st.button("π Read Entire History"): |
|
all_content = [] |
|
for fpath in sorted(md_files, key=os.path.getmtime): |
|
with open(fpath,'r',encoding='utf-8') as ff: |
|
c = ff.read().strip() |
|
if c: |
|
all_content.append((fpath, c)) |
|
mp3_files = [] |
|
for (fpath, text) in all_content: |
|
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural") |
|
audio_file = speak_with_edge_tts(text, voice=voice) |
|
if audio_file: |
|
mp3_files.append(audio_file) |
|
st.write(f"**{os.path.basename(fpath)}:**") |
|
play_and_download_audio(audio_file) |
|
|
|
if mp3_files: |
|
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" |
|
with open(combined_file, 'wb') as outfile: |
|
for f in mp3_files: |
|
with open(f, 'rb') as infile: |
|
outfile.write(infile.read()) |
|
st.write("**Full Conversation Audio:**") |
|
play_and_download_audio(combined_file) |
|
|
|
with tabs[2]: |
|
st.subheader("βοΈ Settings") |
|
st.write("Currently no additional settings.") |
|
|
|
if st.session_state.should_rerun: |
|
st.session_state.should_rerun = False |
|
st.rerun() |
|
|
|
if __name__=="__main__": |
|
main() |
|
|