awacke1's picture
Update app.py
7ed45f6 verified
raw
history blame
18.2 kB
import streamlit as st
import base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# -------------------- Configuration --------------------
st.set_page_config(
page_title="🚲CCCGπŸ† Code Competition Claude vs GPT",
page_icon="πŸš²πŸ†",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "🚲CCCGπŸ† Code Competition Claude vs GPT"
}
)
load_dotenv()
USER_NAMES = [
"Aria", "Guy", "Sonia", "Tony", "Jenny", "Davis", "Libby", "Clara", "Liam", "Natasha", "William"
]
ENGLISH_VOICES = [
"en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural", "en-GB-TonyNeural",
"en-US-JennyNeural", "en-US-DavisNeural", "en-GB-LibbyNeural", "en-CA-ClaraNeural",
"en-CA-LiamNeural", "en-AU-NatashaNeural", "en-AU-WilliamNeural"
]
USER_VOICES = dict(zip(USER_NAMES, ENGLISH_VOICES))
if 'user_name' not in st.session_state:
st.session_state['user_name'] = USER_NAMES[0]
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
FILE_EMOJIS = {
"md": "πŸ“",
"mp3": "🎡",
}
def get_high_info_terms(text: str) -> list:
# Expanded stop words
stop_words = set([
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there', 'as', 'if', 'while'
])
# Key phrases tailored to your interests
key_phrases = [
'artificial intelligence', 'machine learning', 'deep learning', 'neural networks',
'natural language processing', 'healthcare systems', 'clinical medicine',
'genomics', 'biological systems', 'cognitive science', 'data visualization',
'wellness technology', 'robotics', 'medical imaging', 'semantic understanding',
'transformers', 'large language models', 'empirical studies', 'scientific research',
'quantum mechanics', 'biomedical engineering', 'computational biology'
]
# Preserve key phrases and remove them from the text
preserved_phrases = []
lower_text = text.lower()
for phrase in key_phrases:
if phrase in lower_text:
preserved_phrases.append(phrase)
text = text.replace(phrase, '')
break # Stop after the first matching key phrase
# Extract words and filter high-info terms
words = re.findall(r'\b\w+(?:-\w+)*\b', text)
high_info_words = [
word.lower() for word in words
if len(word) > 3
and word.lower() not in stop_words
and not word.isdigit()
and any(c.isalpha() for c in word)
]
# Combine preserved phrases and filtered words, ensuring uniqueness
unique_terms = []
seen = set()
for term in preserved_phrases + high_info_words:
if term not in seen:
seen.add(term)
unique_terms.append(term)
# Return only the top 5 terms
return unique_terms[:5]
def clean_text_for_filename(text: str) -> str:
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
filtered = [w for w in words if len(w)>3 and w not in stop_short]
return '_'.join(filtered)[:200]
def generate_filename(prompt, response, file_type="md"):
# Adjust timezone to Central Time
central_tz = pytz.timezone('America/Chicago')
central_time = datetime.now(central_tz)
# Format the prefix to include the required format
prefix = central_time.strftime("%m-%d-%y_%I-%M-%p_") # e.g., 12-20-24_11-34-AM_
combined = (prompt + " " + response).strip()
info_terms = get_high_info_terms(combined)
snippet = (prompt[:100] + " " + response[:100]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
name_parts = info_terms + [snippet_cleaned]
full_name = '_'.join(name_parts)
if len(full_name) > 150:
full_name = full_name[:150]
filename = f"{prefix}{full_name}.{file_type}"
return filename
def create_file(prompt, response, file_type="md"):
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file):
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">πŸ“‚ Download {os.path.basename(file)}</a>'
def clean_for_speech(text: str) -> str:
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, "mp3")
try:
await communicate.save(out_fn)
except edge_tts.exceptions.NoAudioReceived:
st.error("No audio was received from TTS service.")
return None
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
def load_files_for_sidebar():
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:17]
groups[prefix].append(f)
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
sorted_prefixes = sorted(groups.keys(),
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
return get_high_info_terms(text)
def display_file_manager_sidebar(groups, sorted_prefixes):
st.sidebar.title("🎡 Audio & Docs Manager")
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("πŸ—‘ DelAllMD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("πŸ—‘ DelAllMP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("⬇️ ZipAll"):
z = create_zip_of_files(all_md, all_mp3)
if z:
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
c1,c2 = st.columns(2)
with c1:
if st.button("πŸ‘€ViewGrp", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
with c2:
if st.button("πŸ—‘DelGrp", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.success(f"Deleted group {prefix}!")
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
st.write(f"**{fname}** - {ctime}")
def create_zip_of_files(md_files, mp3_files):
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f,'r',encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3'):
all_content.append(os.path.basename(f))
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content)
timestamp = datetime.now().strftime("%y%m_%H%M")
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
zip_name = f"{timestamp}_{name_text}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False):
"""Perform Arxiv search (via your RAG pattern) and generate audio summaries."""
start = time.time()
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
# The next lines call your RAG pipeline
refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0]
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
result = f"### πŸ”Ž {q}\n\n{r2}\n\n{refs}"
# Audio outputs
if full_audio:
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
audio_file_full = speak_with_edge_tts(complete_text)
if audio_file_full:
st.write("### πŸ“š Full Audio")
play_and_download_audio(audio_file_full)
if vocal_summary:
main_text = clean_for_speech(r2)
if main_text.strip():
audio_file_main = speak_with_edge_tts(main_text)
if audio_file_main:
st.write("### πŸŽ™ Short Audio")
play_and_download_audio(audio_file_main)
if extended_refs:
summaries_text = "Extended references: " + refs.replace('"','')
summaries_text = clean_for_speech(summaries_text)
if summaries_text.strip():
audio_file_refs = speak_with_edge_tts(summaries_text)
if audio_file_refs:
st.write("### πŸ“œ Long Refs")
play_and_download_audio(audio_file_refs)
if titles_summary:
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Titles: " + ", ".join(titles)
titles_text = clean_for_speech(titles_text)
if titles_text.strip():
audio_file_titles = speak_with_edge_tts(titles_text)
if audio_file_titles:
st.write("### πŸ”– Titles")
play_and_download_audio(audio_file_titles)
# show text last after playback interfaces. For the big one lets add a feature later that breaks into their own.
st.markdown(result)
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
create_file(q, result, "md")
return result
def main():
st.session_state['user_name'] = st.selectbox("Current User:", USER_NAMES, index=0)
# Display saved files in sidebar
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
st.markdown(get_download_link(f), unsafe_allow_html=True)
if st.button("❌ Close"):
st.session_state.viewing_prefix = None
if st.button("πŸ—‘οΈ Clear All History in Sidebar"):
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
for f in md_files+mp3_files:
os.remove(f)
st.success("All history cleared!")
st.rerun()
st.title("πŸŽ™οΈ ArXiv Voice Search")
# Voice component
mycomponent = components.declare_component("mycomponent", path="mycomponent")
voice_val = mycomponent(my_input_value="Start speaking...")
tabs = st.tabs(["🎀 Voice Chat", "πŸ’Ύ History", "βš™οΈ Settings"])
with tabs[0]:
st.subheader("🎀 Voice Chat")
if voice_val:
voice_text = voice_val.strip()
input_changed = (voice_text != st.session_state.get('old_val'))
if input_changed and voice_text:
# Save user input
create_file(st.session_state['user_name'], voice_text, "md")
# Perform ArXiv search automatically
with st.spinner("Searching ArXiv..."):
# Always do vocal_summary = True, extended_refs=False, titles_summary=True, full_audio=False
result = perform_ai_lookup(voice_text, vocal_summary=True, extended_refs=False, titles_summary=True, full_audio=False)
# Update old_val
st.session_state['old_val'] = voice_text
# Clear the text by rerunning
#st.rerun()
st.write("Speak a query to run an ArXiv search and hear the results.")
with tabs[1]:
st.subheader("πŸ’Ύ History")
# Show all MD files and allow reading them aloud
md_files = sorted(glob.glob("*.md"), key=os.path.getmtime, reverse=True)
for i, fpath in enumerate(md_files, start=1):
fname = os.path.basename(fpath)
with open(fpath,'r',encoding='utf-8') as ff:
content = ff.read()
with st.expander(fname, expanded=False):
st.write(content)
if st.button(f"πŸ”Š Read Aloud {fname}", key=f"read_{i}_{fname}"):
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(content, voice=voice)
if audio_file:
play_and_download_audio(audio_file)
if st.button("πŸ“œ Read Entire History"):
all_content = []
for fpath in sorted(md_files, key=os.path.getmtime):
with open(fpath,'r',encoding='utf-8') as ff:
c = ff.read().strip()
if c:
all_content.append((fpath, c))
mp3_files = []
for (fpath, text) in all_content:
voice = USER_VOICES.get(st.session_state['user_name'], "en-US-AriaNeural")
audio_file = speak_with_edge_tts(text, voice=voice)
if audio_file:
mp3_files.append(audio_file)
st.write(f"**{os.path.basename(fpath)}:**")
play_and_download_audio(audio_file)
if mp3_files:
combined_file = f"full_conversation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
with open(combined_file, 'wb') as outfile:
for f in mp3_files:
with open(f, 'rb') as infile:
outfile.write(infile.read())
st.write("**Full Conversation Audio:**")
play_and_download_audio(combined_file)
with tabs[2]:
st.subheader("βš™οΈ Settings")
st.write("Currently no additional settings.")
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__=="__main__":
main()