Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
import torch | |
import json | |
import os | |
import glob | |
from pathlib import Path | |
from datetime import datetime | |
import edge_tts | |
import asyncio | |
import base64 | |
import requests | |
from collections import defaultdict | |
from audio_recorder_streamlit import audio_recorder | |
import streamlit.components.v1 as components | |
from urllib.parse import quote | |
from xml.etree import ElementTree as ET | |
# Initialize session state | |
if 'search_history' not in st.session_state: | |
st.session_state['search_history'] = [] | |
if 'last_voice_input' not in st.session_state: | |
st.session_state['last_voice_input'] = "" | |
if 'transcript_history' not in st.session_state: | |
st.session_state['transcript_history'] = [] | |
if 'should_rerun' not in st.session_state: | |
st.session_state['should_rerun'] = False | |
if 'search_columns' not in st.session_state: | |
st.session_state['search_columns'] = [] | |
if 'initial_search_done' not in st.session_state: | |
st.session_state['initial_search_done'] = False | |
if 'tts_voice' not in st.session_state: | |
st.session_state['tts_voice'] = "en-US-AriaNeural" | |
if 'arxiv_last_query' not in st.session_state: | |
st.session_state['arxiv_last_query'] = "" | |
class VideoSearch: | |
def __init__(self): | |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2') | |
self.load_dataset() | |
def fetch_dataset_rows(self): | |
"""Fetch dataset from Hugging Face API""" | |
try: | |
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train" | |
response = requests.get(url, timeout=30) | |
if response.status_code == 200: | |
data = response.json() | |
if 'rows' in data: | |
processed_rows = [] | |
for row_data in data['rows']: | |
row = row_data.get('row', row_data) | |
for key in row: | |
if any(term in key.lower() for term in ['embed', 'vector', 'encoding']): | |
if isinstance(row[key], str): | |
try: | |
row[key] = [float(x.strip()) for x in row[key].strip('[]').split(',') if x.strip()] | |
except: | |
continue | |
processed_rows.append(row) | |
df = pd.DataFrame(processed_rows) | |
st.session_state['search_columns'] = [col for col in df.columns | |
if col not in ['video_embed', 'description_embed', 'audio_embed']] | |
return df | |
return self.load_example_data() | |
except: | |
return self.load_example_data() | |
def prepare_features(self): | |
"""Prepare embeddings with adaptive field detection""" | |
try: | |
embed_cols = [col for col in self.dataset.columns | |
if any(term in col.lower() for term in ['embed', 'vector', 'encoding'])] | |
embeddings = {} | |
for col in embed_cols: | |
try: | |
data = [] | |
for row in self.dataset[col]: | |
if isinstance(row, str): | |
values = [float(x.strip()) for x in row.strip('[]').split(',') if x.strip()] | |
elif isinstance(row, list): | |
values = row | |
else: | |
continue | |
data.append(values) | |
if data: | |
embeddings[col] = np.array(data) | |
except: | |
continue | |
# Set main embeddings for search | |
if 'video_embed' in embeddings: | |
self.video_embeds = embeddings['video_embed'] | |
else: | |
self.video_embeds = next(iter(embeddings.values())) | |
if 'description_embed' in embeddings: | |
self.text_embeds = embeddings['description_embed'] | |
else: | |
self.text_embeds = self.video_embeds | |
except: | |
# Fallback to random embeddings | |
num_rows = len(self.dataset) | |
self.video_embeds = np.random.randn(num_rows, 384) | |
self.text_embeds = np.random.randn(num_rows, 384) | |
def load_example_data(self): | |
"""Load example data as fallback""" | |
example_data = [ | |
{ | |
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc", | |
"youtube_id": "IO-vwtyicn4", | |
"description": "This video shows a close-up of an ancient text carved into a surface.", | |
"views": 45489, | |
"start_time": 1452, | |
"end_time": 1458, | |
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774], | |
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819] | |
} | |
] | |
return pd.DataFrame(example_data) | |
def load_dataset(self): | |
self.dataset = self.fetch_dataset_rows() | |
self.prepare_features() | |
def search(self, query, column=None, top_k=20): | |
query_embedding = self.text_model.encode([query])[0] | |
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0] | |
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0] | |
combined_sims = 0.5 * video_sims + 0.5 * text_sims | |
# Column filtering | |
if column and column in self.dataset.columns and column != "All Fields": | |
mask = self.dataset[column].astype(str).str.contains(query, case=False) | |
combined_sims[~mask] *= 0.5 | |
top_k = min(top_k, 100) | |
top_indices = np.argsort(combined_sims)[-top_k:][::-1] | |
results = [] | |
for idx in top_indices: | |
result = {'relevance_score': float(combined_sims[idx])} | |
for col in self.dataset.columns: | |
if col not in ['video_embed', 'description_embed', 'audio_embed']: | |
result[col] = self.dataset.iloc[idx][col] | |
results.append(result) | |
return results | |
def get_speech_model(): | |
return edge_tts.Communicate | |
async def generate_speech(text, voice=None): | |
if not text.strip(): | |
return None | |
if not voice: | |
voice = st.session_state['tts_voice'] | |
try: | |
communicate = get_speech_model()(text, voice) | |
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" | |
await communicate.save(audio_file) | |
return audio_file | |
except Exception as e: | |
st.error(f"Error generating speech: {e}") | |
return None | |
def transcribe_audio(audio_path): | |
"""Placeholder for ASR transcription (no OpenAI/Anthropic). | |
Integrate your own ASR model or API here.""" | |
# For now, just return a message: | |
return "ASR not implemented. Integrate a local model or another service here." | |
def show_file_manager(): | |
"""Display file manager interface""" | |
st.subheader("π File Manager") | |
col1, col2 = st.columns(2) | |
with col1: | |
uploaded_file = st.file_uploader("Upload File", type=['txt', 'md', 'mp3']) | |
if uploaded_file: | |
with open(uploaded_file.name, "wb") as f: | |
f.write(uploaded_file.getvalue()) | |
st.success(f"Uploaded: {uploaded_file.name}") | |
st.experimental_rerun() | |
with col2: | |
if st.button("π Clear All Files"): | |
for f in glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3"): | |
os.remove(f) | |
st.success("All files cleared!") | |
st.experimental_rerun() | |
files = glob.glob("*.txt") + glob.glob("*.md") + glob.glob("*.mp3") | |
if files: | |
st.write("### Existing Files") | |
for f in files: | |
with st.expander(f"π {os.path.basename(f)}"): | |
if f.endswith('.mp3'): | |
st.audio(f) | |
else: | |
with open(f, 'r', encoding='utf-8') as file: | |
st.text_area("Content", file.read(), height=100) | |
if st.button(f"Delete {os.path.basename(f)}", key=f"del_{f}"): | |
os.remove(f) | |
st.experimental_rerun() | |
def arxiv_search(query, max_results=5): | |
"""Perform a simple Arxiv search using their API and return top results.""" | |
base_url = "http://export.arxiv.org/api/query?" | |
# Encode the query | |
search_url = base_url + f"search_query={quote(query)}&start=0&max_results={max_results}" | |
r = requests.get(search_url) | |
if r.status_code == 200: | |
root = ET.fromstring(r.text) | |
# Namespace handling | |
ns = {'atom': 'http://www.w3.org/2005/Atom'} | |
entries = root.findall('atom:entry', ns) | |
results = [] | |
for entry in entries: | |
title = entry.find('atom:title', ns).text.strip() | |
summary = entry.find('atom:summary', ns).text.strip() | |
link = None | |
for l in entry.findall('atom:link', ns): | |
if l.get('type') == 'text/html': | |
link = l.get('href') | |
break | |
results.append((title, summary, link)) | |
return results | |
return [] | |
def perform_arxiv_lookup(q, vocal_summary=True, titles_summary=True, full_audio=False): | |
results = arxiv_search(q, max_results=5) | |
if not results: | |
st.write("No Arxiv results found.") | |
return | |
st.markdown(f"**Arxiv Search Results for '{q}':**") | |
for i, (title, summary, link) in enumerate(results, start=1): | |
st.markdown(f"**{i}. {title}**") | |
st.write(summary) | |
if link: | |
st.markdown(f"[View Paper]({link})") | |
# TTS Options | |
if vocal_summary: | |
spoken_text = f"Here are some Arxiv results for {q}. " | |
if titles_summary: | |
spoken_text += " Titles: " + ", ".join([res[0] for res in results]) | |
else: | |
# Just first summary if no titles_summary | |
spoken_text += " " + results[0][1][:200] | |
audio_file = asyncio.run(generate_speech(spoken_text)) | |
if audio_file: | |
st.audio(audio_file) | |
if full_audio: | |
# Full audio of summaries | |
full_text = "" | |
for i,(title, summary, _) in enumerate(results, start=1): | |
full_text += f"Result {i}: {title}. {summary} " | |
audio_file_full = asyncio.run(generate_speech(full_text)) | |
if audio_file_full: | |
st.write("### Full Audio") | |
st.audio(audio_file_full) | |
def main(): | |
st.title("π₯ Video & Arxiv Search with Voice (No OpenAI/Anthropic)") | |
# Initialize search class | |
search = VideoSearch() | |
# Create tabs | |
tab1, tab2, tab3, tab4 = st.tabs(["π Search", "ποΈ Voice Input", "π Arxiv", "π Files"]) | |
# ---- Tab 1: Video Search ---- | |
with tab1: | |
st.subheader("Search Videos") | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
query = st.text_input("Enter your search query:", | |
value="ancient" if not st.session_state['initial_search_done'] else "") | |
with col2: | |
search_column = st.selectbox("Search in field:", | |
["All Fields"] + st.session_state['search_columns']) | |
col3, col4 = st.columns(2) | |
with col3: | |
num_results = st.slider("Number of results:", 1, 100, 20) | |
with col4: | |
search_button = st.button("π Search") | |
if (search_button or not st.session_state['initial_search_done']) and query: | |
st.session_state['initial_search_done'] = True | |
selected_column = None if search_column == "All Fields" else search_column | |
with st.spinner("Searching..."): | |
results = search.search(query, selected_column, num_results) | |
st.session_state['search_history'].append({ | |
'query': query, | |
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
'results': results[:5] | |
}) | |
for i, result in enumerate(results, 1): | |
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=(i==1)): | |
cols = st.columns([2, 1]) | |
with cols[0]: | |
st.markdown("**Description:**") | |
st.write(result['description']) | |
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s") | |
st.markdown(f"**Views:** {result['views']:,}") | |
with cols[1]: | |
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}") | |
if result.get('youtube_id'): | |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") | |
if st.button(f"π Audio Summary", key=f"audio_{i}"): | |
summary = f"Video summary: {result['description'][:200]}" | |
audio_file = asyncio.run(generate_speech(summary)) | |
if audio_file: | |
st.audio(audio_file) | |
# ---- Tab 2: Voice Input ---- | |
with tab2: | |
st.subheader("Voice Input") | |
st.write("ποΈ Record your voice:") | |
audio_bytes = audio_recorder() | |
if audio_bytes: | |
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav" | |
with open(audio_path, "wb") as f: | |
f.write(audio_bytes) | |
st.success("Audio recorded successfully!") | |
voice_query = transcribe_audio(audio_path) | |
st.markdown("**Transcribed Text:**") | |
st.write(voice_query) | |
st.session_state['last_voice_input'] = voice_query | |
if st.button("π Search from Voice"): | |
results = search.search(voice_query, None, 20) | |
for i, result in enumerate(results, 1): | |
with st.expander(f"Result {i}", expanded=(i==1)): | |
st.write(result['description']) | |
if result.get('youtube_id'): | |
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result.get('start_time', 0)}") | |
if os.path.exists(audio_path): | |
os.remove(audio_path) | |
# ---- Tab 3: Arxiv Search ---- | |
with tab3: | |
st.subheader("Arxiv Search") | |
q = st.text_input("Enter your Arxiv search query:", value=st.session_state['arxiv_last_query']) | |
vocal_summary = st.checkbox("π Short Audio Summary", value=True) | |
titles_summary = st.checkbox("π Titles Only", value=True) | |
full_audio = st.checkbox("π Full Audio Results", value=False) | |
if st.button("π Arxiv Search"): | |
st.session_state['arxiv_last_query'] = q | |
perform_arxiv_lookup(q, vocal_summary=vocal_summary, titles_summary=titles_summary, full_audio=full_audio) | |
# ---- Tab 4: File Manager ---- | |
with tab4: | |
show_file_manager() | |
# Sidebar | |
with st.sidebar: | |
st.subheader("βοΈ Settings & History") | |
if st.button("ποΈ Clear History"): | |
st.session_state['search_history'] = [] | |
st.experimental_rerun() | |
st.markdown("### Recent Searches") | |
for entry in reversed(st.session_state['search_history'][-5:]): | |
with st.expander(f"{entry['timestamp']}: {entry['query']}"): | |
for i, result in enumerate(entry['results'], 1): | |
st.write(f"{i}. {result['description'][:100]}...") | |
st.markdown("### Voice Settings") | |
st.selectbox("TTS Voice:", | |
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"], | |
key="tts_voice") | |
if __name__ == "__main__": | |
main() | |