Spaces:
Runtime error
Runtime error
| import pandas as pd | |
| import streamlit as st | |
| # Load the XLSX file using pandas | |
| data = pd.read_excel('your_file.xlsx') | |
| # Perform EDA on the data | |
| # ... | |
| # Function to create the top ten ordered distribution | |
| def create_top_ten_distribution(data, column): | |
| # Count the unique values and blanks in the specified column | |
| value_counts = data[column].value_counts(dropna=False) | |
| # Create a DataFrame with the top ten values and their counts | |
| top_ten_df = pd.DataFrame({'Value': value_counts.index, 'Count': value_counts.values}) | |
| top_ten_df['Rank'] = range(1, len(top_ten_df) + 1) | |
| return top_ten_df.head(10) | |
| # Function to display the filtered dataframe based on rank | |
| def display_filtered_dataframe(data, column, rank): | |
| # Get the value corresponding to the specified rank | |
| value = top_ten_df[top_ten_df['Rank'] == rank]['Value'].values[0] | |
| # Filter the dataframe based on the value | |
| filtered_df = data[data[column] == value] | |
| return filtered_df | |
| # Streamlit app | |
| def main(): | |
| st.title('Top Ten Distribution and Filtered Dataframe') | |
| # Specify the column for creating the top ten distribution | |
| column = 'your_column_name' | |
| # Create the top ten ordered distribution | |
| top_ten_df = create_top_ten_distribution(data, column) | |
| # Display the top ten distribution as a markdown table | |
| st.markdown('### Top Ten Distribution') | |
| st.markdown(top_ten_df.to_markdown(index=False)) | |
| # Get the user input for the rank | |
| rank = st.number_input('Enter the rank to filter the dataframe', min_value=1, max_value=10, value=1, step=1) | |
| # Display the filtered dataframe based on the rank | |
| filtered_df = display_filtered_dataframe(data, column, rank) | |
| st.markdown(f'### Filtered Dataframe (Rank: {rank})') | |
| st.dataframe(filtered_df) | |
| if __name__ == '__main__': | |
| main() |