Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import zipfile
|
| 3 |
+
import streamlit as st
|
| 4 |
+
import nltk
|
| 5 |
+
from nltk.corpus import stopwords
|
| 6 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
| 7 |
+
import plotly.express as px
|
| 8 |
+
|
| 9 |
+
nltk.download('punkt')
|
| 10 |
+
nltk.download('stopwords')
|
| 11 |
+
|
| 12 |
+
def preprocess_text(text):
|
| 13 |
+
# Tokenize the text and remove stopwords
|
| 14 |
+
tokens = nltk.word_tokenize(text.lower())
|
| 15 |
+
stop_words = set(stopwords.words('english'))
|
| 16 |
+
filtered_tokens = [token for token in tokens if token not in stop_words]
|
| 17 |
+
return filtered_tokens
|
| 18 |
+
|
| 19 |
+
def get_context_files(prompt, md_files):
|
| 20 |
+
# Preprocess the prompt and context files
|
| 21 |
+
processed_prompt = preprocess_text(prompt)
|
| 22 |
+
processed_files = {}
|
| 23 |
+
for file in md_files:
|
| 24 |
+
with open(file, 'r') as f:
|
| 25 |
+
content = f.read()
|
| 26 |
+
processed_files[file] = preprocess_text(content)
|
| 27 |
+
|
| 28 |
+
# Calculate word matches and LCS bonus
|
| 29 |
+
file_matches = {}
|
| 30 |
+
for file, tokens in processed_files.items():
|
| 31 |
+
single_matches = set(tokens) & set(processed_prompt)
|
| 32 |
+
double_matches = set(nltk.bigrams(tokens)) & set(nltk.bigrams(processed_prompt))
|
| 33 |
+
triple_matches = set(nltk.trigrams(tokens)) & set(nltk.trigrams(processed_prompt))
|
| 34 |
+
match_count = len(single_matches) + len(double_matches) * 4 + len(triple_matches) * 9
|
| 35 |
+
file_matches[file] = {
|
| 36 |
+
'single_matches': single_matches,
|
| 37 |
+
'double_matches': double_matches,
|
| 38 |
+
'triple_matches': triple_matches,
|
| 39 |
+
'match_count': match_count
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
# Sort the files by the match count
|
| 43 |
+
sorted_files = sorted(file_matches.items(), key=lambda x: x[1]['match_count'], reverse=True)
|
| 44 |
+
|
| 45 |
+
# Create a markdown outline with match counts and word matches
|
| 46 |
+
outline = "## Outline\n"
|
| 47 |
+
for file, matches in sorted_files:
|
| 48 |
+
outline += f"- {file}: {matches['match_count']} matches\n"
|
| 49 |
+
if matches['single_matches']:
|
| 50 |
+
outline += f" - Single word matches: {', '.join(matches['single_matches'])}\n"
|
| 51 |
+
if matches['double_matches']:
|
| 52 |
+
outline += f" - Double word matches: {', '.join(' '.join(pair) for pair in matches['double_matches'])}\n"
|
| 53 |
+
if matches['triple_matches']:
|
| 54 |
+
outline += f" - Triple word matches: {', '.join(' '.join(trio) for trio in matches['triple_matches'])}\n"
|
| 55 |
+
|
| 56 |
+
# Create a single prompt by concatenating the original prompt and the content of the top ten files
|
| 57 |
+
context_prompt = prompt
|
| 58 |
+
for file, _ in sorted_files[:10]:
|
| 59 |
+
with open(file, 'r') as f:
|
| 60 |
+
content = f.read()
|
| 61 |
+
# Highlight the matching words in bold
|
| 62 |
+
for word in file_matches[file]['single_matches']:
|
| 63 |
+
content = content.replace(word, f"**{word}**")
|
| 64 |
+
for pair in file_matches[file]['double_matches']:
|
| 65 |
+
content = content.replace(' '.join(pair), f"**{' '.join(pair)}**")
|
| 66 |
+
for trio in file_matches[file]['triple_matches']:
|
| 67 |
+
content = content.replace(' '.join(trio), f"**{' '.join(trio)}**")
|
| 68 |
+
context_prompt += '\n\n' + content
|
| 69 |
+
|
| 70 |
+
# Create a plotly graph showing the match counts for the top ten files
|
| 71 |
+
fig = px.bar(x=[file for file, _ in sorted_files[:10]], y=[matches['match_count'] for _, matches in sorted_files[:10]])
|
| 72 |
+
fig.update_layout(xaxis_title='File', yaxis_title='Match Count')
|
| 73 |
+
st.plotly_chart(fig)
|
| 74 |
+
|
| 75 |
+
return outline, context_prompt
|
| 76 |
+
|
| 77 |
+
# Streamlit app
|
| 78 |
+
def main():
|
| 79 |
+
st.title("Context-Aware Prompt Evaluation")
|
| 80 |
+
|
| 81 |
+
# File upload
|
| 82 |
+
uploaded_file = st.file_uploader("Upload a zip file with .md files", type="zip")
|
| 83 |
+
|
| 84 |
+
if uploaded_file is not None:
|
| 85 |
+
# Unzip the uploaded file
|
| 86 |
+
with zipfile.ZipFile(uploaded_file, 'r') as zip_ref:
|
| 87 |
+
zip_ref.extractall('uploaded_files')
|
| 88 |
+
|
| 89 |
+
# Get the list of .md files from the uploaded directory
|
| 90 |
+
md_files = [os.path.join('uploaded_files', file) for file in os.listdir('uploaded_files') if file.endswith('.md')]
|
| 91 |
+
|
| 92 |
+
# Show the list of files
|
| 93 |
+
st.subheader("Uploaded Files")
|
| 94 |
+
for file in md_files:
|
| 95 |
+
st.write(file)
|
| 96 |
+
|
| 97 |
+
# Prompt input
|
| 98 |
+
prompt = st.session_state.get('prompt', 'What are the main use cases of generative AI in healthcare that are currently unsolved?')
|
| 99 |
+
prompt = st.text_area("Enter your prompt", value=prompt, key='prompt')
|
| 100 |
+
|
| 101 |
+
# Evaluate the files for the prompt
|
| 102 |
+
if st.button("Evaluate"):
|
| 103 |
+
outline, context_prompt = get_context_files(prompt, md_files)
|
| 104 |
+
st.subheader("Outline")
|
| 105 |
+
st.markdown(outline)
|
| 106 |
+
st.subheader("Context Prompt")
|
| 107 |
+
st.markdown(context_prompt)
|
| 108 |
+
|
| 109 |
+
if __name__ == '__main__':
|
| 110 |
+
main()
|