|
import torch |
|
import transformers |
|
import gradio as gr |
|
from ragatouille import RAGPretrainedModel |
|
from huggingface_hub import InferenceClient |
|
import re |
|
from datetime import datetime |
|
import json |
|
|
|
retrieve_results = 10 |
|
show_examples = False |
|
|
|
generate_kwargs = dict( |
|
temperature = None, |
|
max_new_tokens = 512, |
|
top_p = None, |
|
do_sample = False, |
|
) |
|
|
|
RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert") |
|
|
|
try: |
|
gr.Info("Setting up retriever, please wait...") |
|
rag_initial_output = RAG.search("what is Mistral?", k = 1) |
|
gr.Info("Retriever working successfully!") |
|
except: |
|
gr.Warning("Retriever not working!") |
|
|
|
mark_text = '# 🔍 Search Results\n' |
|
header_text = "# ArXivCS RAG \n" |
|
try: |
|
with open("README.md", "r") as f: |
|
mdfile = f.read() |
|
date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}' |
|
match = re.search(date_pattern, mdfile) |
|
date = match.group().split(': ')[1] |
|
formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y') |
|
header_text += f'Index Last Updated: {formatted_date}\n' |
|
except: |
|
pass |
|
|
|
if show_examples: |
|
with open("sample_outputs.json", "r") as f: |
|
sample_outputs = json.load(f) |
|
output_placeholder = sample_outputs['output_placeholder'] |
|
md_text_initial = sample_outputs['search_placeholder'] |
|
else: |
|
output_placeholder = None |
|
md_text_initial = '' |
|
|
|
|
|
def rag_cleaner(inp): |
|
rank = inp['rank'] |
|
title = inp['document_metadata']['title'] |
|
content = inp['content'] |
|
date = inp['document_metadata']['_time'] |
|
return f"{rank}. <b> {title} </b> \n Date : {date} \n Abstract: {content}" |
|
|
|
def get_prompt_text(question, context, formatted = True): |
|
if formatted: |
|
sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer the question. Cite the titles of your sources when answering, do not cite links or dates." |
|
message = f"Question: {question}" |
|
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> " |
|
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n" |
|
|
|
def get_references(question, retriever, k = retrieve_results): |
|
rag_out = retriever.search(query=question, k=k) |
|
return rag_out |
|
|
|
def get_rag(message): |
|
return get_references(message, RAG) |
|
|
|
with gr.Blocks(theme = gr.themes.Soft()) as demo: |
|
header = gr.Markdown(header_text) |
|
with gr.Group(): |
|
msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?') |
|
with gr.Accordion("Advanced Settings", open=False): |
|
with gr.Row(equal_height = True): |
|
llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model') |
|
llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results as context") |
|
stream_results = gr.Checkbox(value = True, label = "Stream output") |
|
|
|
output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder) |
|
input = gr.Textbox(show_label = False, visible = False) |
|
gr_md = gr.Markdown(mark_text + md_text_initial) |
|
|
|
def update_with_rag_md(message, llm_results_use = 5): |
|
rag_out = get_rag(message) |
|
md_text_updated = mark_text |
|
for i in range(retrieve_results): |
|
rag_answer = rag_out[i] |
|
title = rag_answer['document_metadata']['title'].replace('\n','') |
|
|
|
|
|
date = rag_answer['document_metadata']['_time'] |
|
paper_title = f'''### {date} | [{title}](https://arxiv.org/abs/{rag_answer['document_id']}) | [⬇️](https://arxiv.org/pdf/{rag_answer['document_id']})\n''' |
|
paper_abs = rag_answer['content'] |
|
authors = rag_answer['document_metadata']['authors'].replace('\n','') |
|
authors_formatted = f'*{authors}*' + ' \n\n' |
|
|
|
md_text_updated += paper_title + authors_formatted + paper_abs + '\n---------------\n'+ '\n' |
|
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use])) |
|
return md_text_updated, prompt |
|
|
|
def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2', stream_outputs = False): |
|
model_disabled_text = "LLM Model is disabled" |
|
output = "" |
|
if llm_model_picked == 'None': |
|
if stream_outputs: |
|
for out in model_disabled_text: |
|
output += out |
|
yield output |
|
return output |
|
else: |
|
return model_disabled_text |
|
|
|
client = InferenceClient(llm_model_picked) |
|
try: |
|
stream = client.text_generation(prompt, **generate_kwargs, stream=stream_outputs, details=False, return_full_text=False) |
|
except: |
|
gr.Warning("LLM Inference rate limit reached, try again later!") |
|
return "" |
|
|
|
|
|
if stream_outputs: |
|
for response in stream: |
|
output += response |
|
yield output |
|
return output |
|
else: |
|
return stream |
|
|
|
|
|
msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model, stream_results], output_text) |
|
|
|
demo.queue(default_concurrency_limit=10).launch() |