Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -20,84 +20,66 @@ import huggingface_hub
|
|
20 |
from huggingface_hub import Repository, hf_hub_download, upload_file
|
21 |
from datetime import datetime
|
22 |
|
|
|
23 |
# Dataset and Token links - change awacke1 to your own HF id, and add a HF_TOKEN copy to your repo for write permissions
|
24 |
# This should allow you to save your results to your own Dataset hosted on HF. ---
|
25 |
-
DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv"
|
26 |
-
DATASET_REPO_ID = "awacke1/Carddata.csv"
|
27 |
-
DATA_FILENAME = "Carddata.csv"
|
28 |
-
DATA_FILE = os.path.join("data", DATA_FILENAME)
|
29 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
try:
|
42 |
-
hf_hub_download(
|
43 |
-
repo_id=DATASET_REPO_ID,
|
44 |
-
filename=DATA_FILENAME,
|
45 |
-
cache_dir=DATA_DIRNAME,
|
46 |
-
force_filename=DATA_FILENAME
|
47 |
-
)
|
48 |
-
except:
|
49 |
-
print("file not found")
|
50 |
-
repo = Repository(
|
51 |
-
local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
52 |
-
)
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
return ""
|
83 |
-
|
84 |
-
|
85 |
-
iface = gr.Interface(
|
86 |
-
store_message,
|
87 |
-
[
|
88 |
-
inputs.Textbox(placeholder="Your name"),
|
89 |
-
inputs.Textbox(placeholder="Your message", lines=2),
|
90 |
-
],
|
91 |
-
"html",
|
92 |
-
css="""
|
93 |
-
.message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; }
|
94 |
-
""",
|
95 |
-
title="Reading/writing to a HuggingFace dataset repo from Spaces",
|
96 |
-
description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.",
|
97 |
-
article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})",
|
98 |
-
)
|
99 |
-
|
100 |
-
|
101 |
mname = "facebook/blenderbot-400M-distill"
|
102 |
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
|
103 |
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
|
@@ -132,8 +114,9 @@ def chat(message, history):
|
|
132 |
history_useful = add_note_to_history(response, history_useful)
|
133 |
list_history = history_useful[0].split('</s> <s>')
|
134 |
history.append((list_history[-2], list_history[-1]))
|
135 |
-
store_message(message, response) # Save to dataset
|
136 |
return history, history
|
|
|
137 |
|
138 |
SAMPLE_RATE = 16000
|
139 |
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
|
@@ -148,26 +131,19 @@ def process_audio_file(file):
|
|
148 |
data = librosa.to_mono(data)
|
149 |
return data
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
def transcribe(audio, state = ""): # two parms - had been testing video and file inputs at same time.
|
154 |
-
# Grant additional context
|
155 |
-
# time.sleep(1)
|
156 |
if state is None:
|
157 |
state = ""
|
158 |
audio_data = process_audio_file(audio)
|
159 |
with tempfile.TemporaryDirectory() as tmpdir:
|
160 |
-
# Filepath transcribe
|
161 |
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
162 |
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
163 |
transcriptions = model.transcribe([audio_path])
|
164 |
-
# Direct transcribe
|
165 |
-
# transcriptions = model.transcribe([audio])
|
166 |
-
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis
|
167 |
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
168 |
transcriptions = transcriptions[0]
|
169 |
transcriptions = transcriptions[0]
|
170 |
-
store_message(transcriptions, state) # Save to dataset
|
171 |
state = state + transcriptions + " "
|
172 |
return state, state
|
173 |
|
@@ -176,16 +152,10 @@ iface = gr.Interface(
|
|
176 |
inputs=[
|
177 |
gr.Audio(source="microphone", type='filepath', streaming=True),
|
178 |
"state",
|
179 |
-
#gr.Image(label="Webcam", source="webcam"),
|
180 |
-
#gr.File(label="File"),
|
181 |
],
|
182 |
outputs=[
|
183 |
"textbox",
|
184 |
"state",
|
185 |
-
#gr.HighlightedText(label="HighlightedText", color_map={"punc": "pink", "test 0": "blue"}),
|
186 |
-
#gr.HighlightedText(label="HighlightedText", show_legend=True),
|
187 |
-
#gr.JSON(label="JSON"),
|
188 |
-
#gr.HTML(label="HTML"),
|
189 |
],
|
190 |
layout="horizontal",
|
191 |
theme="huggingface",
|
@@ -193,6 +163,6 @@ iface = gr.Interface(
|
|
193 |
description=f"Live Automatic Speech Recognition (ASR) with Memory💾 Dataset.",
|
194 |
allow_flagging='never',
|
195 |
live=True,
|
196 |
-
article=f"Result Output Saved to Memory💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
|
197 |
)
|
198 |
iface.launch()
|
|
|
20 |
from huggingface_hub import Repository, hf_hub_download, upload_file
|
21 |
from datetime import datetime
|
22 |
|
23 |
+
# ---------------------------------------------
|
24 |
# Dataset and Token links - change awacke1 to your own HF id, and add a HF_TOKEN copy to your repo for write permissions
|
25 |
# This should allow you to save your results to your own Dataset hosted on HF. ---
|
26 |
+
#DATASET_REPO_URL = "https://huggingface.co/datasets/awacke1/Carddata.csv"
|
27 |
+
#DATASET_REPO_ID = "awacke1/Carddata.csv"
|
28 |
+
#DATA_FILENAME = "Carddata.csv"
|
29 |
+
#DATA_FILE = os.path.join("data", DATA_FILENAME)
|
30 |
+
#HF_TOKEN = os.environ.get("HF_TOKEN")
|
31 |
+
#SCRIPT = """
|
32 |
+
|
33 |
+
#<script>
|
34 |
+
#if (!window.hasBeenRun) {
|
35 |
+
# window.hasBeenRun = true;
|
36 |
+
# console.log("should only happen once");
|
37 |
+
# document.querySelector("button.submit").click();
|
38 |
+
#}
|
39 |
+
#</script>
|
40 |
+
#"""
|
41 |
+
|
42 |
+
#try:
|
43 |
+
# hf_hub_download(
|
44 |
+
# repo_id=DATASET_REPO_ID,
|
45 |
+
# filename=DATA_FILENAME,
|
46 |
+
# cache_dir=DATA_DIRNAME,
|
47 |
+
# force_filename=DATA_FILENAME
|
48 |
+
# )
|
49 |
+
#except:
|
50 |
+
# print("file not found")
|
51 |
+
#repo = Repository(
|
52 |
+
# local_dir="data", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
|
53 |
+
#)
|
54 |
+
|
55 |
+
#def store_message(name: str, message: str):
|
56 |
+
# if name and message:
|
57 |
+
# with open(DATA_FILE, "a") as csvfile:
|
58 |
+
# writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
|
59 |
+
# writer.writerow(
|
60 |
+
# {"name": name.strip(), "message": message.strip(), "time": str(datetime.now())}
|
61 |
+
# )
|
62 |
+
# # uncomment line below to begin saving -
|
63 |
+
# commit_url = repo.push_to_hub()
|
64 |
+
# return ""
|
65 |
+
|
66 |
+
#iface = gr.Interface(
|
67 |
+
# store_message,
|
68 |
+
# [
|
69 |
+
# inputs.Textbox(placeholder="Your name"),
|
70 |
+
# inputs.Textbox(placeholder="Your message", lines=2),
|
71 |
+
# ],
|
72 |
+
# "html",
|
73 |
+
# css="""
|
74 |
+
# .message {background-color:cornflowerblue;color:white; padding:4px;margin:4px;border-radius:4px; }
|
75 |
+
# """,
|
76 |
+
# title="Reading/writing to a HuggingFace dataset repo from Spaces",
|
77 |
+
# description=f"This is a demo of how to do simple *shared data persistence* in a Gradio Space, backed by a dataset repo.",
|
78 |
+
# article=f"The dataset repo is [{DATASET_REPO_URL}]({DATASET_REPO_URL})",
|
79 |
+
#)
|
80 |
+
|
81 |
+
|
82 |
+
# main -------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
mname = "facebook/blenderbot-400M-distill"
|
84 |
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
|
85 |
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
|
|
|
114 |
history_useful = add_note_to_history(response, history_useful)
|
115 |
list_history = history_useful[0].split('</s> <s>')
|
116 |
history.append((list_history[-2], list_history[-1]))
|
117 |
+
# store_message(message, response) # Save to dataset - uncomment if you uncomment above to save inputs and outputs to your dataset
|
118 |
return history, history
|
119 |
+
|
120 |
|
121 |
SAMPLE_RATE = 16000
|
122 |
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge")
|
|
|
131 |
data = librosa.to_mono(data)
|
132 |
return data
|
133 |
|
134 |
+
|
135 |
+
def transcribe(audio, state = ""):
|
|
|
|
|
|
|
136 |
if state is None:
|
137 |
state = ""
|
138 |
audio_data = process_audio_file(audio)
|
139 |
with tempfile.TemporaryDirectory() as tmpdir:
|
|
|
140 |
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav')
|
141 |
soundfile.write(audio_path, audio_data, SAMPLE_RATE)
|
142 |
transcriptions = model.transcribe([audio_path])
|
|
|
|
|
|
|
143 |
if type(transcriptions) == tuple and len(transcriptions) == 2:
|
144 |
transcriptions = transcriptions[0]
|
145 |
transcriptions = transcriptions[0]
|
146 |
+
# store_message(transcriptions, state) # Save to dataset - uncomment to store into a dataset - hint you will need your HF_TOKEN
|
147 |
state = state + transcriptions + " "
|
148 |
return state, state
|
149 |
|
|
|
152 |
inputs=[
|
153 |
gr.Audio(source="microphone", type='filepath', streaming=True),
|
154 |
"state",
|
|
|
|
|
155 |
],
|
156 |
outputs=[
|
157 |
"textbox",
|
158 |
"state",
|
|
|
|
|
|
|
|
|
159 |
],
|
160 |
layout="horizontal",
|
161 |
theme="huggingface",
|
|
|
163 |
description=f"Live Automatic Speech Recognition (ASR) with Memory💾 Dataset.",
|
164 |
allow_flagging='never',
|
165 |
live=True,
|
166 |
+
# article=f"Result Output Saved to Memory💾 Dataset: [{DATASET_REPO_URL}]({DATASET_REPO_URL})"
|
167 |
)
|
168 |
iface.launch()
|