Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
import wikipedia | |
import random | |
import gradio as gr | |
model_name = "deepset/electra-base-squad2" | |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) | |
def get_wiki_article(topic): | |
topic=topic | |
try: | |
search = wikipedia.search(topic, results = 1)[0] | |
except wikipedia.DisambiguationError as e: | |
choices = [x for x in e.options if ('disambiguation' not in x) and ('All pages' not in x) and (x!=topic)] | |
search = random.choice(choices) | |
try: | |
p = wikipedia.page(search) | |
except wikipedia.exceptions.DisambiguationError as e: | |
choices = [x for x in e.options if ('disambiguation' not in x) and ('All pages' not in x) and (x!=topic)] | |
s = random.choice(choices) | |
p = wikipedia.page(s) | |
return p.content, p.url | |
def get_answer(topic, question): | |
w_art, w_url=get_wiki_article(topic) | |
qa = {'question': question, 'context': w_art} | |
res = nlp(qa) | |
return res['answer'], w_url, {'confidence':res['score']} | |
inputs = [ | |
gr.inputs.Textbox(lines=2, label="Topic"), | |
gr.inputs.Textbox(lines=2, label="Question") | |
] | |
outputs = [ | |
gr.outputs.Textbox(type='str',label="Answer"), | |
gr.outputs.Textbox(type='str',label="Wikipedia Reference Article"), | |
gr.outputs.Label(type="confidences",label="Confidence in answer (assuming the correct wikipedia article)"), | |
] | |
title = "AI Wikipedia Search" | |
description = 'Contextual Question and Answer' | |
article = '' | |
examples = [ | |
['State of Minnesota', 'What birds and mammals are in Minnesota?'], | |
['Syncope', 'What are possible causes of it?'], | |
['Marvel', 'Who are the artists?'], | |
['DC Comics', 'Who are the artists?'], | |
['Artwork', 'What are the top paintings sold at auction?'] | |
] | |
gr.Interface(get_answer, inputs, outputs, title=title, description=description, article=article, examples=examples, flagging_options=["strongly related","related", "neutral", "unrelated", "strongly unrelated"]).launch(share=False,enable_queue=False) |