sci-mcq-GPT / app.py
avanish07's picture
Update app.py
b68d7a3
raw
history blame
4.97 kB
import numpy as np
import pandas as pd
from string import Template
import streamlit as st
import base64
from datasets import load_dataset
from datasets import Dataset
import torch
from tqdm import tqdm
from peft import LoraConfig, get_peft_model
import transformers
# from transformers import AutoModelForCausalLM, AdapterConfig
from transformers import AutoConfig,AutoModelForCausalLM, BitsAndBytesConfig, AutoTokenizer
from transformers import TrainingArguments
from peft import LoraConfig
from peft import *
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
from langchain.prompts import PromptTemplate
from IPython.display import Markdown, display
peft_model_id = "./"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, peft_model_id)
prompt_template = """Answer the following multiple choice question by giving the most appropriate response. Answer should be one among [A, B, C, D, E] \
in order of the most likely to be correct to the least likely to be correct.'
Question: {prompt}\n
A) {a}\n
B) {b}\n
C) {c}\n
D) {d}\n
E) {e}\n
Answer: """
prompt = PromptTemplate(template=prompt_template, input_variables=['prompt', 'a', 'b', 'c', 'd', 'e'])
def format_text_to_prompt(example):
ans = prompt.format(prompt=example['prompt'],
a=example['A'],
b=example['B'],
c=example['C'],
d=example['D'],
e=example['E'])
return {"ans": ans}
def get_ans(text):
inputs = tokenizer(text, return_tensors='pt')
logits = model(input_ids=inputs['input_ids'].cuda(), attention_mask=inputs['attention_mask'].cuda()).logits[0, -1]
# Create a list of tuples having (logit, 'option') format
options_list = [(logits[tokenizer(' A').input_ids[-1]], 'A'), (logits[tokenizer(' B').input_ids[-1]], 'B'), (logits[tokenizer(' C').input_ids[-1]], 'C'), (logits[tokenizer(' D').input_ids[-1]], 'D'), (logits[tokenizer(' E').input_ids[-1]], 'E')]
options_list = sorted(options_list, reverse=True)
ans_list = []
for i in range(3):
ans_list.append(options_list[i][1])
return ans_list
def get_base64_of_bin_file(bin_file):
with open(bin_file, 'rb') as f:
data = f.read()
return base64.b64encode(data).decode()
def set_png_as_page_bg(png_file):
img = get_base64_of_bin_file(png_file)
page_bg_img = f"""
<style>
[data-testid="stAppViewContainer"] > .main {{
background-image: url("https://www.tata.com/content/dam/tata/images/verticals/desktop/banner_travel_umaidbhavan_desktop_1920x1080.jpg");
background-size: 200%;
background-position: center;
background-repeat: no-repeat;
background-attachment: local;
}}
[data-testid="stSidebar"] > div:first-child {{
background-image: url("data:image/png;base64,{img}");
background-position: center;
background-repeat: no-repeat;
background-attachment: fixed;
}}
[data-testid="stHeader"] {{
background: rgba(0,0,0,0);
}}
[data-testid="stToolbar"] {{
right: 2rem;
}}
</style>
"""
st.markdown(page_bg_img, unsafe_allow_html=True)
def get_base64_encoded_image(image_path):
with open(image_path, "rb") as img_file:
encoded_string = base64.b64encode(img_file.read()).decode("utf-8")
return encoded_string
def main():
set_png_as_page_bg("net_technology_5407.jpg")
image_path = "artificial-intelligence.jpg" # Replace with the actual image file path
st.title("Sci-mcq-GPT")
link = "https://drive.google.com/file/d/1_2TqNNyoczhxIBmU7BpOzEi2bu3MC-sx/view?usp=sharing"
icon_path = "pdf download logo.png"
encoded_image = get_base64_encoded_image(icon_path)
lnk = f'<a href="{link}"><img src="data:image/png;base64,{encoded_image}" width="50" height="50"></a>'
col = st.sidebar
col.markdown(lnk, unsafe_allow_html=True)
st.subheader("Ask Q&A")
col1, col2 = st.columns(2)
query = col1.text_area("Enter your question")
if col1.button("Get Answer"):
ans = get_ans(query)
print(ans)
col2.text_area("Sci-mcq-GPT Response", ans)
else:
col2.text_area("Sci-mcq-GPT Response", value="")
col_sidebar = st.sidebar
col_sidebar.image(image_path, caption=" ", width=300)
if __name__ == "__main__":
main()