leaderboards / app.py
Tristan Thrush
removed requirement to be from autoeval org
23ca923
raw
history blame
7.93 kB
import pandas as pd
from tqdm.auto import tqdm
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from ascending_metrics import ascending_metrics
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading
def get_model_ids(author=None):
api = HfApi()
if author is None:
models = api.list_models(filter="model-index")
else:
models = api.list_models(filter="model-index", author="autoevaluate")
model_ids = [x.modelId for x in models]
return model_ids
def get_metadata(model_id):
try:
readme_path = hf_hub_download(model_id, filename="README.md")
return metadata_load(readme_path)
except Exception:
# 404 README.md not found or problem loading it
return None
def parse_metric_value(value):
if isinstance(value, str):
"".join(value.split("%"))
try:
value = float(value)
except: # noqa: E722
value = None
elif isinstance(value, list):
if len(value) > 0:
value = value[0]
else:
value = None
value = round(value, 2) if isinstance(value, float) else None
return value
def parse_metrics_rows(meta, only_verified=False):
if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
return None
for result in meta["model-index"][0]["results"]:
if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
continue
dataset = result["dataset"]["type"]
row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
if "split" in result["dataset"]:
row["split"] = result["dataset"]["split"]
if "config" in result["dataset"]:
row["config"] = result["dataset"]["config"]
no_results = True
for metric in result["metrics"]:
name = metric["type"].lower().strip()
if name in ("model_id", "dataset", "split", "config"):
# Metrics are not allowed to be named "dataset", "split", "config".
continue
value = parse_metric_value(metric.get("value", None))
if value is None:
continue
if name in row:
new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
if name not in row or new_metric_better:
# overwrite the metric if the new value is better.
if only_verified:
if "verified" in metric and metric["verified"]:
no_results = False
row[name] = value
else:
no_results = False
row[name] = value
if no_results:
continue
yield row
@st.cache(ttl=3600)
def get_data_wrapper():
def get_data():
data = []
verified_data = []
model_ids = get_model_ids()[:100]
model_ids_from_autoeval = set(get_model_ids(author="autoevaluate"))
for model_id in tqdm(model_ids):
meta = get_metadata(model_id)
if meta is None:
continue
for row in parse_metrics_rows(meta):
if row is None:
continue
row["model_id"] = model_id
data.append(row)
for row in parse_metrics_rows(meta, only_verified=True):
if row is None:
continue
row["model_id"] = model_id
verified_data.append(row)
dataframe = pd.DataFrame.from_records(data)
dataframe.to_pickle("cache.pkl")
verified_dataframe = pd.DataFrame.from_records(verified_data)
verified_dataframe.to_pickle("verified_cache.pkl")
if exists("cache.pkl") and exists("verified_cache.pkl"):
# If we have saved the results previously, call an asynchronous process
# to fetch the results and update the saved file. Don't make users wait
# while we fetch the new results. Instead, display the old results for
# now. The new results should be loaded when this method
# is called again.
dataframe = pd.read_pickle("cache.pkl")
verified_dataframe = pd.read_pickle("verified_cache.pkl")
t = threading.Thread(name='get_data procs', target=get_data)
t.start()
else:
# We have to make the users wait during the first startup of this app.
get_data()
dataframe = pd.read_pickle("cache.pkl")
verified_dataframe = pd.read_pickle("verified_cache.pkl")
return dataframe, verified_dataframe
dataframe, verified_dataframe = get_data_wrapper()
st.markdown("# πŸ€— Leaderboards")
only_verified_results = st.sidebar.checkbox(
"Filter for Verified Results",
)
if only_verified_results:
dataframe = verified_dataframe
selectable_datasets = list(set(dataframe.dataset.tolist()))
query_params = st.experimental_get_query_params()
default_dataset = "common_voice"
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in selectable_datasets:
default_dataset = query_params["dataset"][0]
dataset = st.sidebar.selectbox(
"Dataset",
selectable_datasets,
index=selectable_datasets.index(default_dataset),
)
st.experimental_set_query_params(**{"dataset": [dataset]})
dataset_df = dataframe[dataframe.dataset == dataset]
dataset_df = dataset_df.dropna(axis="columns", how="all")
selectable_configs = list(set(dataset_df["config"]))
config = st.sidebar.selectbox(
"Config",
selectable_configs,
)
dataset_df = dataset_df[dataset_df.config == config]
selectable_splits = list(set(dataset_df["split"]))
split = st.sidebar.selectbox(
"Split",
selectable_splits,
)
dataset_df = dataset_df[dataset_df.split == split]
selectable_metrics = list(filter(lambda column: column not in ("model_id", "dataset", "split", "config"), dataset_df.columns))
dataset_df = dataset_df.filter(["model_id"] + selectable_metrics)
dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
sorting_metric = st.sidebar.radio(
"Sorting Metric",
selectable_metrics,
)
st.markdown(
"Please click on the model's name to be redirected to its model card."
)
st.markdown(
"Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/autoevaluate)."
)
# Make the default metric appear right after model names
cols = dataset_df.columns.tolist()
cols.remove(sorting_metric)
cols = cols[:1] + [sorting_metric] + cols[1:]
dataset_df = dataset_df[cols]
# Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
dataset_df = dataset_df.sort_values(by=cols[1:], ascending=[metric in ascending_metrics for metric in cols[1:]])
dataset_df = dataset_df.replace(np.nan, '-')
# Make the leaderboard
gb = GridOptionsBuilder.from_dataframe(dataset_df)
gb.configure_default_column(sortable=False)
gb.configure_column(
"model_id",
cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
)
for name in selectable_metrics:
gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=2, aggFunc='sum')
gb.configure_column(
sorting_metric,
sortable=True,
cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
)
go = gb.build()
AgGrid(dataset_df, gridOptions=go, allow_unsafe_jscode=True)