Spaces:
Runtime error
Runtime error
from abc import abstractmethod | |
from functools import partial | |
import math | |
import numpy as np | |
import random | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ldm.modules.diffusionmodules.util import ( | |
conv_nd, | |
linear, | |
avg_pool_nd, | |
zero_module, | |
normalization, | |
timestep_embedding, | |
) | |
from ldm.modules.attention import SpatialTransformer | |
# from .positionnet import PositionNet | |
from torch.utils import checkpoint | |
from ldm.util import instantiate_from_config | |
from copy import deepcopy | |
class TimestepBlock(nn.Module): | |
""" | |
Any module where forward() takes timestep embeddings as a second argument. | |
""" | |
def forward(self, x, emb): | |
""" | |
Apply the module to `x` given `emb` timestep embeddings. | |
""" | |
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
""" | |
A sequential module that passes timestep embeddings to the children that | |
support it as an extra input. | |
""" | |
def forward(self, x, emb, context, objs,t): | |
probs = [] | |
self_prob_list = [] | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
elif isinstance(layer, SpatialTransformer): | |
x, prob, self_prob = layer(x, context, objs,t) | |
probs.append(prob) | |
self_prob_list.append(self_prob) | |
else: | |
x = layer(x) | |
return x, probs, self_prob_list | |
class Upsample(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
upsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
if use_conv: | |
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.dims == 3: | |
x = F.interpolate( | |
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" | |
) | |
else: | |
x = F.interpolate(x, scale_factor=2, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
:param channels: channels in the inputs and outputs. | |
:param use_conv: a bool determining if a convolution is applied. | |
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then | |
downsampling occurs in the inner-two dimensions. | |
""" | |
def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.dims = dims | |
stride = 2 if dims != 3 else (1, 2, 2) | |
if use_conv: | |
self.op = conv_nd( | |
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding | |
) | |
else: | |
assert self.channels == self.out_channels | |
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.op(x) | |
class ResBlock(TimestepBlock): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
:param emb_channels: the number of timestep embedding channels. | |
:param dropout: the rate of dropout. | |
:param out_channels: if specified, the number of out channels. | |
:param use_conv: if True and out_channels is specified, use a spatial | |
convolution instead of a smaller 1x1 convolution to change the | |
channels in the skip connection. | |
:param dims: determines if the signal is 1D, 2D, or 3D. | |
:param use_checkpoint: if True, use gradient checkpointing on this module. | |
:param up: if True, use this block for upsampling. | |
:param down: if True, use this block for downsampling. | |
""" | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
use_conv=False, | |
use_scale_shift_norm=False, | |
dims=2, | |
use_checkpoint=False, | |
up=False, | |
down=False, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_checkpoint = use_checkpoint | |
self.use_scale_shift_norm = use_scale_shift_norm | |
self.in_layers = nn.Sequential( | |
normalization(channels), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.updown = up or down | |
if up: | |
self.h_upd = Upsample(channels, False, dims) | |
self.x_upd = Upsample(channels, False, dims) | |
elif down: | |
self.h_upd = Downsample(channels, False, dims) | |
self.x_upd = Downsample(channels, False, dims) | |
else: | |
self.h_upd = self.x_upd = nn.Identity() | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
2 * self.out_channels if use_scale_shift_norm else self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
normalization(self.out_channels), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
elif use_conv: | |
self.skip_connection = conv_nd( | |
dims, channels, self.out_channels, 3, padding=1 | |
) | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb): | |
""" | |
Apply the block to a Tensor, conditioned on a timestep embedding. | |
:param x: an [N x C x ...] Tensor of features. | |
:param emb: an [N x emb_channels] Tensor of timestep embeddings. | |
:return: an [N x C x ...] Tensor of outputs. | |
""" | |
# return checkpoint( | |
# self._forward, (x, emb), self.parameters(), self.use_checkpoint | |
# ) | |
if self.use_checkpoint and x.requires_grad: | |
return checkpoint.checkpoint(self._forward, x, emb ) | |
else: | |
return self._forward(x, emb) | |
def _forward(self, x, emb): | |
if self.updown: | |
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] | |
h = in_rest(x) | |
h = self.h_upd(h) | |
x = self.x_upd(x) | |
h = in_conv(h) | |
else: | |
h = self.in_layers(x) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
if self.use_scale_shift_norm: | |
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] | |
scale, shift = th.chunk(emb_out, 2, dim=1) | |
h = out_norm(h) * (1 + scale) + shift | |
h = out_rest(h) | |
else: | |
h = h + emb_out | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class UNetModel(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
out_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
num_heads=8, | |
use_scale_shift_norm=False, | |
transformer_depth=1, | |
positive_len = 768, | |
context_dim=None, | |
fuser_type = None, | |
is_inpaint = False, | |
is_style = False, | |
grounding_downsampler = None, | |
): | |
super().__init__() | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.num_heads = num_heads | |
self.context_dim = context_dim | |
self.fuser_type = fuser_type | |
self.is_inpaint = is_inpaint | |
self.positive_len = positive_len | |
assert fuser_type in ["gatedSA","gatedSA2","gatedCA"] | |
self.grounding_tokenizer_input = None # set externally | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.downsample_net = None | |
self.additional_channel_from_downsampler = 0 | |
self.first_conv_type = "SD" | |
self.first_conv_restorable = True | |
if grounding_downsampler is not None: | |
self.downsample_net = instantiate_from_config(grounding_downsampler) | |
self.additional_channel_from_downsampler = self.downsample_net.out_dim | |
self.first_conv_type = "GLIGEN" | |
if is_inpaint: | |
# The new added channels are: masked image (encoded image) and mask, which is 4+1 | |
in_c = in_channels+self.additional_channel_from_downsampler+in_channels+1 | |
self.first_conv_restorable = False # in inpaint; You must use extra channels to take in masked real image | |
else: | |
in_c = in_channels+self.additional_channel_from_downsampler | |
self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_c, model_channels, 3, padding=1))]) | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
# = = = = = = = = = = = = = = = = = = = = Down Branch = = = = = = = = = = = = = = = = = = = = # | |
for level, mult in enumerate(channel_mult): | |
for _ in range(num_res_blocks): | |
layers = [ ResBlock(ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm,) ] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
dim_head = ch // num_heads | |
layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint)) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: # will not go to this downsample branch in the last feature | |
out_ch = ch | |
self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) | |
ch = out_ch | |
input_block_chans.append(ch) | |
ds *= 2 | |
dim_head = ch // num_heads | |
# self.input_blocks = [ C | RT RT D | RT RT D | RT RT D | R R ] | |
# = = = = = = = = = = = = = = = = = = = = BottleNeck = = = = = = = = = = = = = = = = = = = = # | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock(ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm), | |
SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint), | |
ResBlock(ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm)) | |
# = = = = = = = = = = = = = = = = = = = = Up Branch = = = = = = = = = = = = = = = = = = = = # | |
self.output_blocks = nn.ModuleList([]) | |
for level, mult in list(enumerate(channel_mult))[::-1]: | |
for i in range(num_res_blocks + 1): | |
ich = input_block_chans.pop() | |
layers = [ ResBlock(ch + ich, | |
time_embed_dim, | |
dropout, | |
out_channels=model_channels * mult, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm) ] | |
ch = model_channels * mult | |
if ds in attention_resolutions: | |
dim_head = ch // num_heads | |
layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) ) | |
if level and i == num_res_blocks: | |
out_ch = ch | |
layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) | |
ds //= 2 | |
self.output_blocks.append(TimestepEmbedSequential(*layers)) | |
# self.output_blocks = [ R R RU | RT RT RTU | RT RT RTU | RT RT RT ] | |
self.out = nn.Sequential( | |
normalization(ch), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)), | |
) | |
# self.position_net = instantiate_from_config(grounding_tokenizer) | |
from .text_grounding_net import PositionNet | |
self.position_net = PositionNet(in_dim=positive_len, out_dim=context_dim) | |
def restore_first_conv_from_SD(self): | |
if self.first_conv_restorable: | |
device = self.input_blocks[0][0].weight.device | |
SD_weights = th.load("gligen/SD_input_conv_weight_bias.pth") | |
self.GLIGEN_first_conv_state_dict = deepcopy(self.input_blocks[0][0].state_dict()) | |
self.input_blocks[0][0] = conv_nd(2, 4, 320, 3, padding=1) | |
self.input_blocks[0][0].load_state_dict(SD_weights) | |
self.input_blocks[0][0].to(device) | |
self.first_conv_type = "SD" | |
else: | |
print("First conv layer is not restorable and skipped this process, probably because this is an inpainting model?") | |
def restore_first_conv_from_GLIGEN(self): | |
breakpoint() # TODO | |
def forward_position_net(self,input): | |
# import pdb; pdb.set_trace() | |
if ("boxes" in input): | |
boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"] | |
_ , self.max_box, _ = text_embeddings.shape | |
else: | |
dtype = input["x"].dtype | |
batch = input["x"].shape[0] | |
device = input["x"].device | |
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) | |
masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) | |
if self.training and random.random() < 0.1: # random drop for guidance | |
boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0 | |
objs = self.position_net( boxes, masks, text_embeddings ) # B*N*C | |
return objs | |
def forward_position_net_with_image(self,input): | |
if ("boxes" in input): | |
boxes = input["boxes"] | |
masks = input["masks"] | |
text_masks = input["text_masks"] | |
image_masks = input["image_masks"] | |
text_embeddings = input["text_embeddings"] | |
image_embeddings = input["image_embeddings"] | |
_ , self.max_box, _ = text_embeddings.shape | |
else: | |
dtype = input["x"].dtype | |
batch = input["x"].shape[0] | |
device = input["x"].device | |
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) | |
masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
text_masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
image_masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) | |
image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) | |
if self.training and random.random() < 0.1: # random drop for guidance | |
boxes = boxes*0 | |
masks = masks*0 | |
text_masks = text_masks*0 | |
image_masks = image_masks*0 | |
text_embeddings = text_embeddings*0 | |
image_embeddings = image_embeddings*0 | |
objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) # B*N*C | |
return objs | |
def forward(self, input,unc=False): | |
if ("boxes" in input): | |
# grounding_input = input["grounding_input"] | |
boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"] | |
_ , self.max_box, _ = text_embeddings.shape | |
else: | |
# Guidance null case | |
# grounding_input = self.grounding_tokenizer_input.get_null_input() | |
# boxes, masks, text_embeddings = input["boxes"]*0, input["masks"]*0, input["text_embeddings"]*0 | |
dtype = input["x"].dtype | |
batch = input["x"].shape[0] | |
device = input["x"].device | |
boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device) | |
masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
text_masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
image_masks = th.zeros(batch, self.max_box).type(dtype).to(device) | |
text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) | |
image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device) | |
if self.training and random.random() < 0.1 : # random drop for guidance | |
boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0 | |
objs = self.position_net( boxes, masks, text_embeddings ) | |
# Time embedding | |
t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
# input tensor | |
h = input["x"] | |
t = input["timesteps"] | |
if self.downsample_net != None and self.first_conv_type=="GLIGEN": | |
temp = self.downsample_net(input["grounding_extra_input"]) | |
h = th.cat( [h,temp], dim=1 ) | |
if self.is_inpaint:#self.inpaint_mode: | |
if self.downsample_net != None: | |
breakpoint() # TODO: think about this case | |
h = th.cat( [h, input["inpainting_extra_input"]], dim=1 ) | |
# Text input | |
context = input["context"] | |
# Start forwarding | |
hs = [] | |
probs_first = [] | |
self_prob_list_first = [] | |
for module in self.input_blocks: | |
h,prob, self_prob = module(h, emb, context, objs,t) | |
hs.append(h) | |
probs_first.append(prob) | |
self_prob_list_first.append(self_prob) | |
h,mid_prob, self_prob_list_second = self.middle_block(h, emb, context, objs,t) | |
probs_third = [] | |
self_prob_list_third = [] | |
for module in self.output_blocks: | |
h = th.cat([h, hs.pop()], dim=1) | |
h, prob, self_prob = module(h, emb, context, objs,t) | |
probs_third.append(prob) | |
self_prob_list_third.append(self_prob) | |
return self.out(h),probs_third , mid_prob, probs_first, self_prob_list_first, [self_prob_list_second], self_prob_list_third | |