Spaces:
Sleeping
Sleeping
| import os | |
| import gradio as gr | |
| import requests | |
| import pandas as pd | |
| import yaml | |
| from smolagents import CodeAgent, ToolCallingAgent, WebSearchTool, InferenceClientModel, VisitWebpageTool, GoogleSearchTool, WikipediaSearchTool, OpenAIServerModel | |
| from tools import analyze_image, transcribe_audio | |
| from langfuse import get_client | |
| from openinference.instrumentation.smolagents import SmolagentsInstrumentor | |
| # (Keep Constants as is) | |
| # --- Constants --- | |
| DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
| # --- Agent Definition --- | |
| # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
| class ReasoningAgent: | |
| """Powerful reasoning agent that can double check answers or provide better context. Uses the deepseek R1 model""" | |
| def __init__(self): | |
| model=InferenceClientModel("deepseek-ai/DeepSeek-R1", max_tokens=16192, provider='together') | |
| with open("prompts/toolcalling_agent.yaml", 'r') as stream: | |
| prompt_templates = yaml.safe_load(stream) | |
| self.agent = ToolCallingAgent( | |
| tools=[ | |
| VisitWebpageTool(), | |
| WebSearchTool() | |
| ], | |
| model=model, | |
| add_base_tools=True, | |
| planning_interval=5, | |
| max_steps=10, | |
| name="thinker_agent", | |
| description="Uses the deepseek R1 model to perform more in depth reasoning. Also has access to basic search tools. Use this agent to double check complex logic or check for things you might have missed.", | |
| prompt_templates=prompt_templates, | |
| ) | |
| def __call__(self, prompt: str) -> str: | |
| agent_answer = self.thinker_agent.run(prompt) | |
| print(f"Managed agent answer: {agent_answer}") | |
| return agent_answer | |
| class MasterAgent: | |
| def __init__(self): | |
| model = OpenAIServerModel( | |
| model_id='Qwen/Qwen2.5-Coder-7B-Instruct-GPTQ-Int4', # Match vLLM model | |
| api_base='http://localhost:8000/v1', # vLLM container endpoint | |
| api_key='c9d522a59f485fee4355d8b27135d73f888c94020f1b8c9ed55146237e1c2feb', # vLLM API key | |
| max_tokens=2096, # Pass as kwargs for OpenAI client | |
| temperature=0.5, # Pass as kwargs | |
| custom_role_conversions=None, | |
| client_kwargs=None # Avoid unexpected parameters | |
| ) | |
| with open("prompts/code_agent.yaml", 'r') as stream: | |
| prompt_templates = yaml.safe_load(stream) | |
| custom_instructions = """ | |
| Call the thinker managed agent to double check any answer and formatting before calling final answer. Change formatting to anything it suggests. | |
| """ | |
| try: | |
| thinker=ReasoningAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| print("Starting instantiation of master") | |
| self.master_agent = CodeAgent( | |
| tools=[ | |
| VisitWebpageTool(), | |
| #WebSearchTool(), | |
| WikipediaSearchTool(), | |
| analyze_image, | |
| transcribe_audio, | |
| GoogleSearchTool("serpapi") | |
| ], | |
| model=model, | |
| planning_interval=6, | |
| max_steps=20, | |
| managed_agents=[thinker.agent], | |
| prompt_templates=prompt_templates, | |
| additional_authorized_imports=[ | |
| "json", | |
| "pandas", | |
| "numpy", | |
| ], | |
| instructions=custom_instructions, | |
| ) | |
| print("MasterAgent initialized.") | |
| def __call__(self, question: str, attached_file: str) -> str: | |
| """""" | |
| print(f"Agent received question (first 50 chars): {question[:50]}...") | |
| additional_args = {} | |
| if attached_file: | |
| additional_args = { | |
| "attached_file": attached_file | |
| } | |
| question = question + f" attached_file can be accessed locally at './file_cache/{attached_file}' or at the public URL {DEFAULT_API_URL}/files/{os.path.splitext(attached_file)[0]}" | |
| agent_answer = self.master_agent.run(question, additional_args=additional_args) | |
| print(f"Agent answer: {agent_answer}") | |
| return agent_answer | |
| def run_and_submit_all( profile: gr.OAuthProfile | None): | |
| """ | |
| Fetches all questions, runs the MasterAgent on them, submits all answers, | |
| and displays the results. | |
| """ | |
| # --- Determine HF Space Runtime URL and Repo URL --- | |
| space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
| if profile: | |
| username= f"{profile.username}" | |
| print(f"User logged in: {username}") | |
| else: | |
| print("User not logged in.") | |
| return "Please Login to Hugging Face with the button.", None | |
| api_url = DEFAULT_API_URL | |
| questions_url = f"{api_url}/questions" | |
| #questions_url = f"{api_url}/random-question" | |
| submit_url = f"{api_url}/submit" | |
| # 1. Instantiate Agent ( modify this part to create your agent) | |
| try: | |
| agent = MasterAgent() | |
| except Exception as e: | |
| print(f"Error instantiating agent: {e}") | |
| return f"Error initializing agent: {e}", None | |
| # In the case of an app running as a hugging Face space, this link points toward your codebase ( useful for others so please keep it public) | |
| agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
| print(agent_code) | |
| # 2. Fetch Questions | |
| print(f"Fetching questions from: {questions_url}") | |
| try: | |
| response = requests.get(questions_url, timeout=15) | |
| response.raise_for_status() | |
| questions_data = response.json() # REMOVE BRACKETS WHEN SWITCHING TO ALL QUESTIONS | |
| if not questions_data: | |
| print("Fetched questions list is empty.") | |
| return "Fetched questions list is empty or invalid format.", None | |
| print(f"Fetched {len(questions_data)} questions.") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error fetching questions: {e}") | |
| return f"Error fetching questions: {e}", None | |
| except requests.exceptions.JSONDecodeError as e: | |
| print(f"Error decoding JSON response from questions endpoint: {e}") | |
| print(f"Response text: {response.text[:500]}") | |
| return f"Error decoding server response for questions: {e}", None | |
| except Exception as e: | |
| print(f"An unexpected error occurred fetching questions: {e}") | |
| return f"An unexpected error occurred fetching questions: {e}", None | |
| # 3. Run your Agent | |
| results_log = [] | |
| answers_payload = [] | |
| print(f"Running agent on {len(questions_data)} questions...") | |
| cache_dir = "file_cache" | |
| if not os.path.exists(cache_dir): | |
| os.makedirs(cache_dir) | |
| answers_dir = "answers_cache" | |
| if not os.path.exists(answers_dir): | |
| os.makedirs(answers_dir) | |
| for item in questions_data: | |
| task_id = item.get("task_id") | |
| question_text = item.get("question") | |
| submitted_answer = None | |
| task_answer_path = os.path.join(answers_dir, task_id + '.yaml') | |
| if os.path.exists(task_answer_path): | |
| print(f"Found existing answer for task {task_id}, loading") | |
| with open(task_answer_path, 'r') as stream: | |
| task_answer = yaml.safe_load(stream) | |
| try: | |
| submitted_answer = task_answer.get("submitted_answer") | |
| except Exception as e: | |
| print(f"Existing answer for task {task_id} is invalid.") | |
| attached_file = item.get("file_name") | |
| if attached_file != "": | |
| local_file_path = os.path.join(cache_dir, attached_file) | |
| if not os.path.exists(local_file_path): | |
| file_name_no_ext = os.path.splitext(attached_file)[0] # e.g., 'document' from 'document.pdf' | |
| download_url = f"{api_url}/files/{file_name_no_ext}" | |
| try: | |
| print(f"Downloading from {download_url}") | |
| response = requests.get(download_url, stream=True) | |
| response.raise_for_status() # Raises an HTTPError for bad responses | |
| with open(local_file_path, 'wb') as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| if chunk: | |
| f.write(chunk) | |
| print(f"File downloaded and cached: {local_file_path}") | |
| except requests.exceptions.HTTPError as e: | |
| print(f"HTTP error downloading {download_url}: {e}") | |
| except requests.exceptions.RequestException as e: | |
| print(f"Error downloading {download_url}: {e}") | |
| except OSError as e: | |
| print(f"Error saving file to {local_file_path}: {e}") | |
| if not task_id or question_text is None: | |
| print(f"Skipping item with missing task_id or question: {item}") | |
| continue | |
| try: | |
| if not submitted_answer: | |
| agent_text = agent(question_text, attached_file) | |
| submitted_answer = str(agent_text) | |
| answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
| with open(task_answer_path, 'w') as file: | |
| yaml.dump({"task_id": task_id, "question_text": question_text, "submitted_answer": submitted_answer}, file) | |
| except Exception as e: | |
| print(f"Error running agent on task {task_id}: {e}") | |
| results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
| if not answers_payload: | |
| print("Agent did not produce any answers to submit.") | |
| return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
| # 4. Prepare Submission | |
| submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
| status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
| print(status_update) | |
| # 5. Submit | |
| print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
| try: | |
| response = requests.post(submit_url, json=submission_data, timeout=60) | |
| response.raise_for_status() | |
| result_data = response.json() | |
| final_status = ( | |
| f"Submission Successful!\n" | |
| f"User: {result_data.get('username')}\n" | |
| f"Overall Score: {result_data.get('score', 'N/A')}% " | |
| f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
| f"Message: {result_data.get('message', 'No message received.')}" | |
| ) | |
| print("Submission successful.") | |
| results_df = pd.DataFrame(results_log) | |
| return final_status, results_df | |
| except requests.exceptions.HTTPError as e: | |
| error_detail = f"Server responded with status {e.response.status_code}." | |
| try: | |
| error_json = e.response.json() | |
| error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
| except requests.exceptions.JSONDecodeError: | |
| error_detail += f" Response: {e.response.text[:500]}" | |
| status_message = f"Submission Failed: {error_detail}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.Timeout: | |
| status_message = "Submission Failed: The request timed out." | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except requests.exceptions.RequestException as e: | |
| status_message = f"Submission Failed: Network error - {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| except Exception as e: | |
| status_message = f"An unexpected error occurred during submission: {e}" | |
| print(status_message) | |
| results_df = pd.DataFrame(results_log) | |
| return status_message, results_df | |
| # --- Build Gradio Interface using Blocks --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Agent Evaluation Runner") | |
| gr.Markdown( | |
| """ | |
| **Instructions:** | |
| 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
| 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
| 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
| --- | |
| **Disclaimers:** | |
| Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
| This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
| """ | |
| ) | |
| gr.LoginButton() | |
| run_button = gr.Button("Run Evaluation & Submit All Answers") | |
| status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
| # Removed max_rows=10 from DataFrame constructor | |
| results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
| run_button.click( | |
| fn=run_and_submit_all, | |
| outputs=[status_output, results_table] | |
| ) | |
| if __name__ == "__main__": | |
| print("\n" + "-"*30 + " App Starting " + "-"*30) | |
| # Check for SPACE_HOST and SPACE_ID at startup for information | |
| space_host_startup = os.getenv("SPACE_HOST") | |
| space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
| # Instrumentation | |
| langfuse = get_client() | |
| if langfuse.auth_check(): | |
| print("Langfuse client is authenticated and ready!") | |
| else: | |
| print("Authentication failed. Please check your credentials and host.") | |
| SmolagentsInstrumentor().instrument() | |
| if space_host_startup: | |
| print(f"✅ SPACE_HOST found: {space_host_startup}") | |
| print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
| else: | |
| print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
| if space_id_startup: # Print repo URLs if SPACE_ID is found | |
| print(f"✅ SPACE_ID found: {space_id_startup}") | |
| print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
| print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
| else: | |
| print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
| print("-"*(60 + len(" App Starting ")) + "\n") | |
| print("Launching Gradio Interface for Agent Evaluation...") | |
| demo.launch(debug=True, share=False) |