Spaces:
Running
on
Zero
Running
on
Zero
#================================================================================== | |
# https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer | |
#================================================================================== | |
print('=' * 70) | |
print('Giant Music Transformer Gradio App') | |
print('=' * 70) | |
print('Loading core Giant Music Transformer modules...') | |
import os | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
print('=' * 70) | |
print('Loading main Giant Music Transformer modules...') | |
os.environ['USE_FLASH_ATTENTION'] = '1' | |
import torch | |
torch.set_float32_matmul_precision('high') | |
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_cudnn_sdp(True) | |
import TMIDIX | |
from midi_to_colab_audio import midi_to_colab_audio | |
from x_transformer_1_23_2 import * | |
import random | |
print('=' * 70) | |
print('Loading aux Giant Music Transformer modules...') | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import spaces | |
print('=' * 70) | |
print('PyTorch version:', torch.__version__) | |
print('=' * 70) | |
print('Done!') | |
print('Enjoy! :)') | |
print('=' * 70) | |
#================================================================================== | |
MODEL_CHECKPOINT = 'Giant_Music_Transformer_Medium_Trained_Model_25603_steps_0.3799_loss_0.8934_acc.pth' | |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
NUM_OUT_BATCHES = 8 | |
PREVIEW_LENGTH = 120 # in tokens | |
#================================================================================== | |
print('=' * 70) | |
print('Instantiating model...') | |
device_type = 'cuda' | |
dtype = 'bfloat16' | |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
SEQ_LEN = 8192 | |
PAD_IDX = 19463 | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 2048, | |
depth = 8, | |
heads = 32, | |
rotary_pos_emb = True, | |
attn_flash = True | |
) | |
) | |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict(torch.load(MODEL_CHECKPOINT, map_location='cpu')) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
print('Model will use', dtype, 'precision...') | |
print('=' * 70) | |
#================================================================================== | |
def load_midi(input_midi): | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True) | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=16) | |
instruments_list = list(set([y[6] for y in escore_notes])) | |
#======================================================= | |
# FINAL PROCESSING | |
#======================================================= | |
melody_chords = [] | |
# Break between compositions / Intro seq | |
if 128 in instruments_list: | |
drums_present = 19331 # Yes | |
else: | |
drums_present = 19330 # No | |
pat = escore_notes[0][6] | |
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq | |
#======================================================= | |
# MAIN PROCESSING CYCLE | |
#======================================================= | |
pe = escore_notes[0] | |
for e in escore_notes: | |
#======================================================= | |
# Timings... | |
# Cliping all values... | |
delta_time = max(0, min(255, e[1]-pe[1])) | |
# Durations and channels | |
dur = max(0, min(255, e[2])) | |
cha = max(0, min(15, e[3])) | |
# Patches | |
if cha == 9: # Drums patch will be == 128 | |
pat = 128 | |
else: | |
pat = e[6] | |
# Pitches | |
ptc = max(1, min(127, e[4])) | |
# Velocities | |
# Calculating octo-velocity | |
vel = max(8, min(127, e[5])) | |
velocity = round(vel / 15)-1 | |
#======================================================= | |
# FINAL NOTE SEQ | |
#======================================================= | |
# Writing final note asynchronously | |
dur_vel = (8 * dur) + velocity | |
pat_ptc = (129 * pat) + ptc | |
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) | |
pe = e | |
return melody_chords | |
#================================================================================== | |
def save_midi(tokens, batch_number=None): | |
song = tokens | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patches = [-1] * 16 | |
patches[9] = 9 | |
channels = [0] * 16 | |
channels[9] = 1 | |
for ss in song: | |
if 0 <= ss < 256: | |
time += ss * 16 | |
if 256 <= ss < 2304: | |
dur = ((ss-256) // 8) * 16 | |
vel = (((ss-256) % 8)+1) * 15 | |
if 2304 <= ss < 18945: | |
patch = (ss-2304) // 129 | |
if patch < 128: | |
if patch not in patches: | |
if 0 in channels: | |
cha = channels.index(0) | |
channels[cha] = 1 | |
else: | |
cha = 15 | |
patches[cha] = patch | |
channel = patches.index(patch) | |
else: | |
channel = patches.index(patch) | |
if patch == 128: | |
channel = 9 | |
pitch = (ss-2304) % 129 | |
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
patches = [0 if x==-1 else x for x in patches] | |
if batch_number == None: | |
fname = 'Giant-Music-Transformer-Music-Composition' | |
else: | |
fname = 'Giant-Music-Transformer-Music-Composition_'+str(batch_number) | |
data = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Giant Music Transformer', | |
output_file_name = fname, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches, | |
verbose=False | |
) | |
return song_f | |
#================================================================================== | |
def generate_music(prime, | |
num_gen_tokens, | |
num_mem_tokens, | |
num_gen_batches, | |
gen_outro, | |
gen_drums, | |
model_temperature, | |
model_sampling_top_p | |
): | |
if not prime: | |
inputs = [19461] | |
else: | |
inputs = prime[-num_mem_tokens:] | |
if gen_outro == 'Force': | |
inputs.extend([18945]) | |
if gen_drums: | |
drums = [36, 38] | |
drum_pitch = random.choice(drums) | |
inputs.extend([0, ((8*8)+6)+256, ((128*129)+drum_pitch)+2304]) | |
# torch.cuda.empty_cache() | |
model.cuda() | |
model.eval() | |
print('Generating...') | |
inp = [inputs] * num_gen_batches | |
inp = torch.LongTensor(inp).cuda() | |
with ctx: | |
with torch.inference_mode(): | |
out = model.generate(inp, | |
num_gen_tokens, | |
filter_logits_fn=top_p, | |
filter_kwargs={'thres': model_sampling_top_p}, | |
temperature=model_temperature, | |
return_prime=False, | |
verbose=False) | |
output = out.tolist() | |
output_batches = [] | |
if gen_outro == 'Disable': | |
for o in output: | |
output_batches.append([t for t in o if not 18944 < t < 19330]) | |
else: | |
output_batches = output | |
print('Done!') | |
print('=' * 70) | |
return output_batches | |
#================================================================================== | |
def generate_callback(input_midi, | |
num_prime_tokens, | |
num_gen_tokens, | |
num_mem_tokens, | |
gen_outro, | |
gen_drums, | |
model_temperature, | |
model_sampling_top_p, | |
final_composition, | |
generated_batches, | |
block_lines | |
): | |
generated_batches = [] | |
if not final_composition and input_midi is not None: | |
final_composition = load_midi(input_midi)[:num_prime_tokens] | |
midi_score = save_midi(final_composition) | |
block_lines.append(midi_score[-1][1] / 1000) | |
batched_gen_tokens = generate_music(final_composition, | |
num_gen_tokens, | |
num_mem_tokens, | |
NUM_OUT_BATCHES, | |
gen_outro, | |
gen_drums, | |
model_temperature, | |
model_sampling_top_p | |
) | |
outputs = [] | |
for i in range(len(batched_gen_tokens)): | |
tokens = batched_gen_tokens[i] | |
# Preview | |
tokens_preview = final_composition[-PREVIEW_LENGTH:] | |
# Save MIDI to a temporary file | |
midi_score = save_midi(tokens_preview + tokens, i) | |
# MIDI plot | |
if len(final_composition) > PREVIEW_LENGTH: | |
midi_plot = TMIDIX.plot_ms_SONG(midi_score, | |
plot_title='Batch # ' + str(i), | |
preview_length_in_notes=int(PREVIEW_LENGTH / 3), | |
return_plt=True | |
) | |
else: | |
midi_plot = TMIDIX.plot_ms_SONG(midi_score, | |
plot_title='Batch # ' + str(i), | |
return_plt=True | |
) | |
# File name | |
fname = 'Giant-Music-Transformer-Music-Composition_'+str(i) | |
# Save audio to a temporary file | |
midi_audio = midi_to_colab_audio(fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True | |
) | |
outputs.append([(16000, midi_audio), midi_plot, tokens]) | |
return outputs, final_composition, generated_batches, block_lines | |
#================================================================================== | |
def generate_callback_wrapper(input_midi, | |
num_prime_tokens, | |
num_gen_tokens, | |
num_mem_tokens, | |
gen_outro, | |
gen_drums, | |
model_temperature, | |
model_sampling_top_p, | |
final_composition, | |
generated_batches, | |
block_lines | |
): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
if input_midi is not None: | |
fn = os.path.basename(input_midi.name) | |
fn1 = fn.split('.')[0] | |
print('Input file name:', fn) | |
print('Num prime tokens:', num_prime_tokens) | |
print('Num gen tokens:', num_gen_tokens) | |
print('Num mem tokens:', num_mem_tokens) | |
print('Gen drums:', gen_drums) | |
print('Gen outro:', gen_outro) | |
print('Model temp:', model_temperature) | |
print('Model top_p:', model_sampling_top_p) | |
print('=' * 70) | |
result = generate_callback(input_midi, | |
num_prime_tokens, | |
num_gen_tokens, | |
num_mem_tokens, | |
gen_outro, | |
gen_drums, | |
model_temperature, | |
model_sampling_top_p, | |
final_composition, | |
generated_batches, | |
block_lines | |
) | |
generated_batches = [sublist[-1] for sublist in result[0]] | |
print('=' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
print('*' * 70) | |
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]]) | |
#================================================================================== | |
def add_batch(batch_number, final_composition, generated_batches, block_lines): | |
if generated_batches: | |
final_composition.extend(generated_batches[batch_number]) | |
# Save MIDI to a temporary file | |
midi_score = save_midi(final_composition) | |
block_lines.append(midi_score[-1][1] / 1000) | |
# MIDI plot | |
midi_plot = TMIDIX.plot_ms_SONG(midi_score, | |
plot_title='Giant Music Transformer Composition', | |
block_lines_times_list=block_lines[:-1], | |
return_plt=True) | |
# File name | |
fname = 'Giant-Music-Transformer-Music-Composition' | |
# Save audio to a temporary file | |
midi_audio = midi_to_colab_audio(fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True | |
) | |
print('Added batch #', batch_number) | |
print('=' * 70) | |
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines | |
else: | |
return None, None, None, [], [], [] | |
#================================================================================== | |
def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): | |
if final_composition: | |
if len(final_composition) > num_tokens: | |
final_composition = final_composition[:-num_tokens] | |
block_lines.pop() | |
# Save MIDI to a temporary file | |
midi_score = save_midi(final_composition) | |
# MIDI plot | |
midi_plot = TMIDIX.plot_ms_SONG(midi_score, | |
plot_title='Giant Music Transformer Composition', | |
block_lines_times_list=block_lines[:-1], | |
return_plt=True) | |
# File name | |
fname = 'Giant-Music-Transformer-Music-Composition' | |
# Save audio to a temporary file | |
midi_audio = midi_to_colab_audio(fname + '.mid', | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
output_for_gradio=True | |
) | |
print('Removed batch #', batch_number) | |
print('=' * 70) | |
return (16000, midi_audio), midi_plot, fname+'.mid', final_composition, generated_batches, block_lines | |
else: | |
return None, None, None, [], [], [] | |
#================================================================================== | |
def reset(final_composition=[], generated_batches=[], block_lines=[]): | |
final_composition = [] | |
generated_batches = [] | |
block_lines = [] | |
return final_composition, generated_batches, block_lines | |
#================================================================================== | |
def reset_demo(final_composition=[], generated_batches=[], block_lines=[]): | |
final_composition = [] | |
generated_batches = [] | |
block_lines = [] | |
#================================================================================== | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
with gr.Blocks() as demo: | |
demo.load(reset_demo) | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Giant Music Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Fast multi-instrumental music transformer with true full MIDI instruments range, efficient encoding, octo-velocity and outro tokens</h1>") | |
gr.HTML(""" | |
Check out <a href="https://github.com/asigalov61/Giant-Music-Transformer">Giant Music Transformer</a> on GitHub! | |
<p> | |
<a href="https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb"> | |
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"> | |
</a> or | |
<a href="https://huggingface.co/spaces/asigalov61/Giant-Music-Transformer?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
</a> | |
</p> | |
for faster execution and endless generation! | |
""") | |
#================================================================================== | |
final_composition = gr.State([]) | |
generated_batches = gr.State([]) | |
block_lines = gr.State([]) | |
#================================================================================== | |
gr.Markdown("## Upload seed MIDI or click 'Generate' button for random output") | |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
input_midi.upload(reset, [final_composition, generated_batches, block_lines], | |
[final_composition, generated_batches, block_lines]) | |
gr.Markdown("## Generate") | |
num_prime_tokens = gr.Slider(15, 6990, value=600, step=3, label="Number of prime tokens") | |
num_gen_tokens = gr.Slider(15, 1200, value=600, step=3, label="Number of tokens to generate") | |
num_mem_tokens = gr.Slider(15, 6990, value=6990, step=3, label="Number of memory tokens") | |
gen_drums = gr.Checkbox(value=False, label="Introduce drums") | |
gen_outro = gr.Radio(["Auto", "Disable", "Force"], value="Auto", label="Outro options") | |
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
model_sampling_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value") | |
generate_btn = gr.Button("Generate", variant="primary") | |
gr.Markdown("## Select batch") | |
outputs = [final_composition, generated_batches, block_lines] | |
for i in range(NUM_OUT_BATCHES): | |
with gr.Tab(f"Batch # {i}") as tab: | |
audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3", elem_id="midi_audio") | |
plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") | |
outputs.extend([audio_output, plot_output]) | |
generate_btn.click(generate_callback_wrapper, | |
[input_midi, | |
num_prime_tokens, | |
num_gen_tokens, | |
num_mem_tokens, | |
gen_outro, | |
gen_drums, | |
model_temperature, | |
model_sampling_top_p, | |
final_composition, | |
generated_batches, | |
block_lines | |
], | |
outputs | |
) | |
gr.Markdown("## Add/Remove batch") | |
batch_number = gr.Slider(0, NUM_OUT_BATCHES-1, value=0, step=1, label="Batch number to add/remove") | |
add_btn = gr.Button("Add batch", variant="primary") | |
remove_btn = gr.Button("Remove batch", variant="stop") | |
final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3", elem_id="midi_audio") | |
final_plot_output = gr.Plot(label="Final MIDI plot") | |
final_file_output = gr.File(label="Final MIDI file") | |
add_btn.click(add_batch, [batch_number, final_composition, generated_batches, block_lines], | |
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]) | |
remove_btn.click(remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], | |
[final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines]) | |
demo.unload(reset_demo) | |
#================================================================================== | |
demo.launch() | |
#================================================================================== |