KanhaSays / app.py
ukhirani's picture
added dockerfile
7b14154
import nltk
# nltk.download("punkt")
# nltk.download("wordnet")
# nltk.download("popular")
from nltk.stem import WordNetLemmatizer
nltk.data.path.append("./nltkd/")
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np
from keras.models import load_model
model = load_model("F:\KanhaSays-main\Deployment\model.h5")
import json
import random
intents = json.loads(open("F:/KanhaSays-main/Deployment/gita_intents.json", encoding="utf-8").read())
words = pickle.load(open("F:/KanhaSays-main/Deployment/texts.pkl", "rb"))
classes = pickle.load(open("F:/KanhaSays-main/Deployment/labels.pkl", "rb"))
def clean_up_sentence(sentence):
# tokenize the pattern - split words into array
sentence_words = nltk.word_tokenize(sentence)
# stem each word - create short form for word
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for each word in the bag that exists in the sentence
def bow(sentence, words, show_details=True):
# tokenize the pattern
sentence_words = clean_up_sentence(sentence)
# bag of words - matrix of N words, vocabulary matrix
bag = [0] * len(words)
for s in sentence_words:
for i, w in enumerate(words):
if w == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
# if show_details:
# print("found in bag: %s" % w)
return np.array(bag)
def predict_class(sentence, model):
# filter out predictions below a threshold
p = bow(sentence, words, show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD]
# sort by strength of probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
global result
try:
tag = ints[0]["intent"]
list_of_intents = intents_json["intents"]
for i in list_of_intents:
if i["tag"] == tag:
result = random.choice(i["responses"])
break
except:
result = "I cannot understand this statement. Perhaps rephrase it or type it differently?"
return result
def chatbot_response(msg):
ints = predict_class(msg, model)
res = getResponse(ints, intents)
return res
# s = "how to attain moksha?"
# print(chatbot_response(s))
from flask import Flask, render_template, request, flash
# import pymysql
# # MySQL configuration
# db = pymysql.connect(
# host="localhost",
# user="root",
# password="",
# database="feedback"
# )
app = Flask(__name__)
app.secret_key = "5636-d7b6-d647-dd45-e434-8551-f27b-680d"
# app.static_folder = 'static'
@app.route("/")
def home():
return render_template("/index.html")
@app.route("/ask", methods=["POST", "GET"])
def get_bot_response():
que = request.form["question"]
ans = chatbot_response(que)
return render_template("/index.html", answer=ans, question=que)
# @app.route('/ask',methods=["POST","GET"])
# def feedback():
# return render_template('/error.html')
# @app.route('/submit-feedback', methods=['POST'])
# def submit_feedback():
# name = request.form['name']
# email = request.form['email']
# feedback = request.form['feedback']
# # Insert feedback into database
# cursor = db.cursor()
# sql = "INSERT INTO feedback (name, email, feedback) VALUES (%s, %s, %s)"
# values = (name, email, feedback)
# cursor.execute(sql, values)
# db.commit()
# # Redirect user back to index page with success message
# flash('Thank you for your feedback!')
# return render_template('/index.html')
if __name__ == "__main__":
app.debug = True
app.run()