import nltk # nltk.download("punkt") # nltk.download("wordnet") # nltk.download("popular") from nltk.stem import WordNetLemmatizer nltk.data.path.append("./nltkd/") lemmatizer = WordNetLemmatizer() import pickle import numpy as np from keras.models import load_model model = load_model("F:\KanhaSays-main\Deployment\model.h5") import json import random intents = json.loads(open("F:/KanhaSays-main/Deployment/gita_intents.json", encoding="utf-8").read()) words = pickle.load(open("F:/KanhaSays-main/Deployment/texts.pkl", "rb")) classes = pickle.load(open("F:/KanhaSays-main/Deployment/labels.pkl", "rb")) def clean_up_sentence(sentence): # tokenize the pattern - split words into array sentence_words = nltk.word_tokenize(sentence) # stem each word - create short form for word sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words] return sentence_words # return bag of words array: 0 or 1 for each word in the bag that exists in the sentence def bow(sentence, words, show_details=True): # tokenize the pattern sentence_words = clean_up_sentence(sentence) # bag of words - matrix of N words, vocabulary matrix bag = [0] * len(words) for s in sentence_words: for i, w in enumerate(words): if w == s: # assign 1 if current word is in the vocabulary position bag[i] = 1 # if show_details: # print("found in bag: %s" % w) return np.array(bag) def predict_class(sentence, model): # filter out predictions below a threshold p = bow(sentence, words, show_details=False) res = model.predict(np.array([p]))[0] ERROR_THRESHOLD = 0.25 results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD] # sort by strength of probability results.sort(key=lambda x: x[1], reverse=True) return_list = [] for r in results: return_list.append({"intent": classes[r[0]], "probability": str(r[1])}) return return_list def getResponse(ints, intents_json): global result try: tag = ints[0]["intent"] list_of_intents = intents_json["intents"] for i in list_of_intents: if i["tag"] == tag: result = random.choice(i["responses"]) break except: result = "I cannot understand this statement. Perhaps rephrase it or type it differently?" return result def chatbot_response(msg): ints = predict_class(msg, model) res = getResponse(ints, intents) return res # s = "how to attain moksha?" # print(chatbot_response(s)) from flask import Flask, render_template, request, flash # import pymysql # # MySQL configuration # db = pymysql.connect( # host="localhost", # user="root", # password="", # database="feedback" # ) app = Flask(__name__) app.secret_key = "5636-d7b6-d647-dd45-e434-8551-f27b-680d" # app.static_folder = 'static' @app.route("/") def home(): return render_template("/index.html") @app.route("/ask", methods=["POST", "GET"]) def get_bot_response(): que = request.form["question"] ans = chatbot_response(que) return render_template("/index.html", answer=ans, question=que) # @app.route('/ask',methods=["POST","GET"]) # def feedback(): # return render_template('/error.html') # @app.route('/submit-feedback', methods=['POST']) # def submit_feedback(): # name = request.form['name'] # email = request.form['email'] # feedback = request.form['feedback'] # # Insert feedback into database # cursor = db.cursor() # sql = "INSERT INTO feedback (name, email, feedback) VALUES (%s, %s, %s)" # values = (name, email, feedback) # cursor.execute(sql, values) # db.commit() # # Redirect user back to index page with success message # flash('Thank you for your feedback!') # return render_template('/index.html') if __name__ == "__main__": app.debug = True app.run()