Pixart-Sigma / tools /extract_features.py
artificialguybr's picture
Hi
eadd7b4
raw
history blame
15.2 kB
import os
from pathlib import Path
import sys
current_file_path = Path(__file__).resolve()
sys.path.insert(0, str(current_file_path.parent.parent))
from PIL import Image
import torch
from torchvision import transforms as T
import numpy as np
import json
from tqdm import tqdm
import argparse
import threading
from queue import Queue
from torch.utils.data import DataLoader, RandomSampler
from accelerate import Accelerator
from torchvision.transforms.functional import InterpolationMode
from torchvision.datasets.folder import default_loader
from transformers import T5Tokenizer, T5EncoderModel
from diffusers.models import AutoencoderKL
from diffusion.data.datasets.InternalData import InternalData
from diffusion.utils.misc import SimpleTimer
from diffusion.utils.data_sampler import AspectRatioBatchSampler
from diffusion.data.builder import DATASETS
from diffusion.data.datasets.utils import *
def get_closest_ratio(height: float, width: float, ratios: dict):
aspect_ratio = height / width
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
return ratios[closest_ratio], float(closest_ratio)
@DATASETS.register_module()
class DatasetExtract(InternalData):
def __init__(self,
root, # Notice: need absolute path here
image_list_json=['data_info.json'],
transform=None,
resolution=1024,
load_vae_feat=False,
aspect_ratio_type=None,
start_index=0,
end_index=100_000_000,
multiscale=True,
**kwargs):
self.root = root
self.img_dir_name = 'InternImgs' # need to change to according to your data structure
self.json_dir_name = 'InternData' # need to change to according to your data structure
self.transform = transform
self.load_vae_feat = load_vae_feat
self.resolution = resolution
self.meta_data_clean = []
self.img_samples = []
self.txt_feat_samples = []
self.interpolate_model = InterpolationMode.BICUBIC
if multiscale:
self.aspect_ratio = aspect_ratio_type
assert self.aspect_ratio in [ASPECT_RATIO_512, ASPECT_RATIO_1024, ASPECT_RATIO_2048, ASPECT_RATIO_2880]
if self.aspect_ratio in [ASPECT_RATIO_2048, ASPECT_RATIO_2880]:
self.interpolate_model = InterpolationMode.LANCZOS
self.ratio_index = {}
self.ratio_nums = {}
for k, v in self.aspect_ratio.items():
self.ratio_index[float(k)] = [] # used for self.getitem
self.ratio_nums[float(k)] = 0 # used for batch-sampler
image_list_json = image_list_json if isinstance(image_list_json, list) else [image_list_json]
for json_file in image_list_json:
meta_data = self.load_json(os.path.join(self.root, json_file))
meta_data_clean = [item for item in meta_data if item['ratio'] <= 4.5]
self.meta_data_clean.extend(meta_data_clean)
self.img_samples.extend([os.path.join(self.root.replace(self.json_dir_name, self.img_dir_name), item['path']) for item in meta_data_clean])
self.img_samples = self.img_samples[start_index: end_index]
if multiscale:
# scan the dataset for ratio static
for i, info in enumerate(self.meta_data_clean[:len(self.meta_data_clean)//3]):
ori_h, ori_w = info['height'], info['width']
closest_size, closest_ratio = get_closest_ratio(ori_h, ori_w, self.aspect_ratio)
self.ratio_nums[closest_ratio] += 1
if len(self.ratio_index[closest_ratio]) == 0:
self.ratio_index[closest_ratio].append(i)
# Set loader and extensions
if self.load_vae_feat:
raise ValueError("No VAE loader here")
self.loader = default_loader
def __getitem__(self, idx):
data_info = {}
for i in range(20):
try:
img_path = self.img_samples[idx]
img = self.loader(img_path)
if self.transform:
img = self.transform(img)
# Calculate closest aspect ratio and resize & crop image[w, h]
elif isinstance(img, Image.Image):
h, w = (img.size[1], img.size[0])
assert h, w == (self.meta_data_clean[idx]['height'], self.meta_data_clean[idx]['width'])
closest_size, closest_ratio = get_closest_ratio(h, w, self.aspect_ratio)
closest_size = list(map(lambda x: int(x), closest_size))
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize(closest_size, interpolation=self.interpolate_model), # Image.BICUBIC or Image.LANCZOS
T.CenterCrop(closest_size),
T.ToTensor(),
T.Normalize([.5], [.5]),
])
img = transform(img)
data_info['img_hw'] = torch.tensor([h, w], dtype=torch.float32)
data_info['aspect_ratio'] = closest_ratio
# change the path according to your data structure
return img, img_path.split('/')[-1] # change from 'serial-number-of-dir/serial-number-of-image.png' ---> 'serial-number-of-dir_serial-number-of-image.png'
except Exception as e:
print(f"Error details: {str(e)}")
with open('./failed_files.txt', 'a+') as f:
f.write(self.img_samples[idx] + "\n")
idx = np.random.randint(len(self))
raise RuntimeError('Too many bad data.')
def get_data_info(self, idx):
data_info = self.meta_data_clean[idx]
return {'height': data_info['height'], 'width': data_info['width']}
def extract_caption_t5_do(q):
while not q.empty():
item = q.get()
extract_caption_t5_job(item)
q.task_done()
def extract_caption_t5_job(item):
global mutex
global t5
global t5_save_dir
global count
global total_item
with torch.no_grad():
# make sure the save path is unique here
save_path = os.path.join(t5_save_dir, f"{Path(item['path']).stem}")
if os.path.exists(save_path + ".npz"):
count += 1
return
caption = item[args.caption_label].strip()
if isinstance(caption, str):
caption = [caption]
try:
mutex.acquire()
caption_token = tokenizer(caption, max_length=args.max_length, padding="max_length", truncation=True, return_tensors="pt").to(device)
caption_emb = text_encoder(caption_token.input_ids, attention_mask=caption_token.attention_mask)[0]
mutex.release()
emb_dict = {
'caption_feature': caption_emb.to(torch.float16).cpu().data.numpy(),
'attention_mask': caption_token.attention_mask.to(torch.int16).cpu().data.numpy(),
}
os.umask(0o000) # file permission: 666; dir permission: 777
np.savez_compressed(save_path, **emb_dict)
count += 1
except Exception as e:
print(e)
print(f"CUDA: {os.environ['CUDA_VISIBLE_DEVICES']}, processed: {count}/{total_item}, User Prompt = {args.caption_label}, token length: {args.max_length}, saved at: {t5_save_dir}")
def extract_caption_t5():
global tokenizer
global text_encoder
global t5_save_dir
global count
global total_item
tokenizer = T5Tokenizer.from_pretrained(args.t5_models_dir, subfolder="tokenizer")
text_encoder = T5EncoderModel.from_pretrained(args.t5_models_dir, subfolder="text_encoder", torch_dtype=torch.float16).to(device)
count = 0
t5_save_dir = os.path.join(args.t5_save_root, f"{args.caption_label}_caption_features_new".replace('prompt_', ''))
os.umask(0o000) # file permission: 666; dir permission: 777
os.makedirs(t5_save_dir, exist_ok=True)
train_data_json = json.load(open(args.t5_json_path, 'r'))
train_data = train_data_json[args.start_index: args.end_index]
total_item = len(train_data)
global mutex
mutex = threading.Lock()
jobs = Queue()
for item in tqdm(train_data):
jobs.put(item)
for _ in range(20):
worker = threading.Thread(target=extract_caption_t5_do, args=(jobs,))
worker.start()
jobs.join()
def extract_img_vae(bs):
print("Starting")
accelerator = Accelerator(mixed_precision='fp16')
vae = AutoencoderKL.from_pretrained(f'{args.vae_models_dir}', torch_dtype=torch.float16).to(device)
print('VAE Loaded')
vae_save_dir = f'{args.vae_save_root}/img_sdxl_vae_features_{image_resize}resolution_new'
os.umask(0o000) # file permission: 666; dir permission: 777
os.makedirs(vae_save_dir, exist_ok=True)
interpolation = InterpolationMode.BILINEAR
if image_resize in [2048, 2880]:
interpolation = InterpolationMode.LANCZOS
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB')),
T.Resize(image_resize, interpolation=interpolation),
T.CenterCrop(image_resize),
T.ToTensor(),
T.Normalize([.5], [.5]),
])
signature = ''
dataset = DatasetExtract(args.dataset_root, image_list_json=[args.vae_json_file], transform=transform, sample_subset=None,
start_index=args.start_index, end_index=args.end_index, multiscale=False, work_dir=os.path.join(vae_save_dir, signature))
dataloader = DataLoader(dataset, batch_size=bs, num_workers=13, pin_memory=True)
dataloader = accelerator.prepare(dataloader, )
inference(vae, dataloader, signature=signature, work_dir=vae_save_dir)
accelerator.wait_for_everyone()
return
def save_results(results, paths, signature, work_dir):
timer = SimpleTimer(len(results), log_interval=100, desc=f"Saving at {work_dir}")
# save to npy
new_paths = []
new_folder = signature
save_folder = os.path.join(work_dir, new_folder)
os.makedirs(save_folder, exist_ok=True)
os.umask(0o000) # file permission: 666; dir permission: 777
for res, p in zip(results, paths):
file_name = p.split('.')[0] + '.npy'
save_path = os.path.join(save_folder, file_name)
if os.path.exists(save_path):
continue
new_paths.append(os.path.join(new_folder, file_name))
np.save(save_path, res)
timer.log()
# save paths
with open(os.path.join(work_dir, f"VAE-{signature}.txt"), 'a+') as f:
f.write('\n'.join(new_paths))
def inference(vae, dataloader, signature, work_dir):
timer = SimpleTimer(len(dataloader), log_interval=100, desc=f"VAE-Inference")
for step, batch in enumerate(dataloader):
with torch.no_grad():
with torch.cuda.amp.autocast(enabled=True):
posterior = vae.encode(batch[0]).latent_dist
results = torch.cat([posterior.mean, posterior.std], dim=1).detach().cpu().numpy()
path = batch[1]
save_results(results, path, signature=signature, work_dir=work_dir)
timer.log()
def extract_img_vae_multiscale(bs=1):
assert image_resize in [512, 1024, 2048, 2880]
work_dir = f"{os.path.abspath(args.vae_save_root)}/img_sdxl_vae_features_{image_resize}resolution_ms_new"
os.umask(0o000) # file permission: 666; dir permission: 777
os.makedirs(work_dir, exist_ok=True)
accelerator = Accelerator(mixed_precision='fp16')
vae = AutoencoderKL.from_pretrained(f'{args.vae_models_dir}').to(device)
signature = ''
aspect_ratio_type = eval(f"ASPECT_RATIO_{image_resize}")
print(f"Aspect Ratio Here: {aspect_ratio_type}")
dataset = DatasetExtract(
args.dataset_root, image_list_json=[args.vae_json_file], transform=None, sample_subset=None,
aspect_ratio_type=aspect_ratio_type, start_index=args.start_index, end_index=args.end_index,
work_dir=os.path.join(work_dir, signature)
)
# create AspectRatioBatchSampler
sampler = AspectRatioBatchSampler(sampler=RandomSampler(dataset), dataset=dataset, batch_size=bs, aspect_ratios=dataset.aspect_ratio, ratio_nums=dataset.ratio_nums)
# create DataLoader
dataloader = DataLoader(dataset, batch_sampler=sampler, num_workers=13, pin_memory=True)
dataloader = accelerator.prepare(dataloader, )
inference(vae, dataloader, signature=signature, work_dir=work_dir)
accelerator.wait_for_everyone()
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--run_t5_feature_extract", action='store_true', help="run t5 feature extracting")
parser.add_argument("--run_vae_feature_extract", action='store_true', help="run VAE feature extracting")
parser.add_argument('--start_index', default=0, type=int)
parser.add_argument('--end_index', default=50000000, type=int)
### vae feauture extraction
parser.add_argument("--multi_scale", action='store_true', help="multi-scale feature extraction")
parser.add_argument("--img_size", default=512, type=int, help="image scale for VAE feature extraction")
parser.add_argument('--dataset_root', default='pixart-sigma-toy-dataset', type=str)
parser.add_argument('--vae_json_file', type=str) # relative to args.dataset_root
parser.add_argument(
'--vae_models_dir', default='madebyollin/sdxl-vae-fp16-fix', type=str
)
parser.add_argument(
'--vae_save_root', default='pixart-sigma-toy-dataset/InternData',
type=str
)
### for t5 feature
parser.add_argument("--max_length", default=300, type=int, help="max token length for T5")
parser.add_argument('--t5_json_path', type=str) # absolute path or relative to this project
parser.add_argument(
'--t5_models_dir', default='PixArt-alpha/PixArt-XL-2-1024-MS', type=str
)
parser.add_argument('--caption_label', default='prompt', type=str)
parser.add_argument('--t5_save_root', default='pixart-sigma-toy-dataset/InternData', type=str)
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
image_resize = args.img_size
# prepare extracted caption t5 features for training
if args.run_t5_feature_extract:
extract_caption_t5()
# prepare extracted image vae features for training
if args.run_vae_feature_extract:
if args.multi_scale:
assert args.img_size in [512, 1024, 2048, 2880],\
"Multi Scale VAE feature is not for 256px in PixArt-Sigma."
print('Extracting Multi-scale Image Resolution based on %s' % image_resize)
extract_img_vae_multiscale(bs=1) # recommend bs = 1 for AspectRatioBatchSampler
else:
assert args.img_size == 256,\
f"Single Scale VAE feature is only for 256px in PixArt-Sigma. NOT for {args.img_size}px"
print('Extracting Single Image Resolution %s' % image_resize)
extract_img_vae(bs=2)
print("Done")