Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from .model import gaussian_diffusion as gd | |
from .model.dpm_solver import model_wrapper, DPM_Solver, NoiseScheduleVP | |
def DPMS( | |
model, | |
condition, | |
uncondition, | |
cfg_scale, | |
model_type='noise', # or "x_start" or "v" or "score" | |
noise_schedule="linear", | |
guidance_type='classifier-free', | |
model_kwargs={}, | |
diffusion_steps=1000 | |
): | |
betas = torch.tensor(gd.get_named_beta_schedule(noise_schedule, diffusion_steps)) | |
## 1. Define the noise schedule. | |
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=betas) | |
## 2. Convert your discrete-time `model` to the continuous-time | |
## noise prediction model. Here is an example for a diffusion model | |
## `model` with the noise prediction type ("noise") . | |
model_fn = model_wrapper( | |
model, | |
noise_schedule, | |
model_type=model_type, | |
model_kwargs=model_kwargs, | |
guidance_type=guidance_type, | |
condition=condition, | |
unconditional_condition=uncondition, | |
guidance_scale=cfg_scale, | |
) | |
## 3. Define dpm-solver and sample by multistep DPM-Solver. | |
return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++") |