NativDemo / fonts /app.py
Ashish Ranjan Jha
Initial commit
cc12d2c
import spaces
import os
import gradio as gr
import easyocr
import numpy as np
import cv2
import base64
import torch
from shapely import Polygon
from ultralytics import YOLO
from io import BytesIO
from openai import OpenAI
from PIL import Image, ImageDraw, ImageFont
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
import huggingface_hub
huggingface_hub.login(os.getenv('HF_TOKEN_FLUX'))
bubble_detection_model = YOLO("speech_bubble_model.pt")
language_to_ocr = {
'Simplified Chinese': 'ch_sim',
'Traditional Chinese': 'ch_tra',
'Korean': 'ko',
'Japanese': 'ja',
'English': 'en',
}
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
MARKDOWN = """
# Made by Nativ
"""
check_min_version("0.30.2")
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dytpe=torch.bfloat16
)
cuda_device =torch.device("cuda")
# Build pipeline
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
transformer=transformer,
torch_dtype=torch.bfloat16
).to(cuda_device)
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
def localize_boxes(merged_results, img_boxes, source_language, target_language):
# Convert image to base64
buffered = BytesIO()
img_boxes.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
print(merged_results)
prompt = f"""You are an expert translator and localization specialist with deep understanding of both {source_language} and {target_language} cultures.
Task: Translate the detected text while preserving the cultural context and maintaining visual harmony. Make the results in capital letters.
Source Text and Coordinates:
{merged_results}
Requirements:
1. Maintain the original meaning and tone while adapting to {target_language} cultural context
2. Keep translations concise and visually balanced (similar character length when possible)
3. Preserve any:
- Brand names
- Product names
- Technical terms
- Numbers and units
4. Consider the visual context from the provided image
5. Use appropriate formality level for {target_language}
6. Maintain any special formatting (if present)
Format your response EXACTLY as a JSON-like list of dictionaries. Keep the box coordinates EXACTLY as they are, do not change them, only translate the text.
[{{'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]], 'text': 'translated_text'}}]
Important: Only output the JSON format above, no explanations or additional text."""
client = OpenAI(api_key=OPENAI_API_KEY)
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{
"type": "image_url",
"image_url": {
"url": f"data:image/png;base64,{img_str}"
}
}
]
}
],
max_tokens=1000,
temperature=0
)
try:
translation_text = response.choices[0].message.content
translation_text = translation_text.replace("```json", "").replace("```", "").strip()
translated_results = eval(translation_text)
return translated_results
except Exception as e:
print(f"Error parsing GPT-4o response: {e}")
return merged_results
def merge_boxes(boxes, image_shape, distance_threshold=10):
"""Merge boxes that are close to each other and return their associated text"""
if not boxes:
return []
# Extract boxes and create mapping to original data
boxes_only = [box[0] for box in boxes]
texts = [box[1] for box in boxes] # Extract the text content
# Create a binary mask of all boxes
height, width = image_shape[:2]
mask = np.zeros((height, width), dtype=np.uint8)
# Draw all boxes on mask and create a mapping of pixel positions to box indices
box_indices_map = {} # Will store which original box each pixel belongs to
for idx, coords in enumerate(boxes_only):
pts = np.array(coords, dtype=np.int32)
cv2.fillPoly(mask, [pts], 255)
# Store the indices of boxes for each filled pixel
y_coords, x_coords = np.where(mask == 255)
for y, x in zip(y_coords, x_coords):
if (y, x) not in box_indices_map:
box_indices_map[(y, x)] = []
box_indices_map[(y, x)].append(idx)
# Dilate to connect nearby components
kernel = np.ones((distance_threshold, distance_threshold), np.uint8)
dilated = cv2.dilate(mask, kernel, iterations=1)
# Find connected components
num_labels, labels = cv2.connectedComponents(dilated)
# Create new merged boxes with their associated text
merged_results = []
for label in range(1, num_labels): # Skip background (0)
points = np.where(labels == label)
if len(points[0]): # If component is not empty
y0, x0 = points[0].min(), points[1].min()
y1, x1 = points[0].max(), points[1].max()
# Add small padding
x0 = max(0, x0 - 2)
y0 = max(0, y0 - 2)
x1 = min(width, x1 + 2)
y1 = min(height, y1 + 2)
# Find all original boxes that overlap with this merged box
box_indices = set()
for y in range(y0, y1+1):
for x in range(x0, x1+1):
if (y, x) in box_indices_map:
box_indices.update(box_indices_map[(y, x)])
# Combine text from all overlapping boxes
combined_text = ' '.join([texts[idx] for idx in box_indices])
merged_results.append({
'box': [[x0, y0], [x1, y0], [x1, y1], [x0, y1]],
'text': combined_text
})
return merged_results
def is_box_inside_yolo(box, yolo_boxes, overlap_threshold=0.5):
"""
Check if a text box is inside any of the YOLO-detected speech bubbles.
box: [[x0,y0], [x1,y0], [x1,y1], [x0,y1]]
yolo_boxes: list of YOLO boxes in xywh format
overlap_threshold: minimum overlap ratio required to consider the text inside bubble
"""
text_poly = Polygon(box)
text_area = text_poly.area
for yolo_box in yolo_boxes:
x_center, y_center, width, height = yolo_box
x1, y1 = x_center - width / 2, y_center - height / 2
x2, y2 = x_center + width / 2, y_center + height / 2
bubble_box = [[x1, y1], [x2, y1], [x2, y2], [x1, y2]]
bubble_poly = Polygon(bubble_box)
# Calculate intersection
if text_poly.intersects(bubble_poly):
intersection = text_poly.intersection(bubble_poly)
overlap_ratio = intersection.area / text_area
if overlap_ratio >= overlap_threshold:
return True
return False
def remove_text_regions(image, boxes, yolo_boxes):
"""Fill detected text regions with white"""
img_removed = image.copy()
mask = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
# Fill all detected boxes with white
for box in boxes:
pts = np.array(box[0], dtype=np.int32)
if is_box_inside_yolo(box[0], yolo_boxes):
cv2.fillPoly(img_removed, [pts], (255, 255, 255, 255))
cv2.fillPoly(mask, [pts], (255, 255, 255, 255))
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
return img_removed_rgb, mask
def fit_text_to_box(text, merged_coordinates, angle=0, font_path):
"""
Adjusts the text to fit optimally inside the given box dimensions.
Args:
text (str): The text to fit.
box_size (tuple): A tuple (width, height) specifying the box dimensions.
font_path (str): Path to the font file to be used.
Returns:
PIL.Image: An image with the text fitted inside the box.
"""
width, height = merged_coordinates[1][0] - merged_coordinates[0][0], merged_coordinates[2][1] - merged_coordinates[1][1]
font_size = 1
# Create a dummy image to measure text size
dummy_image = Image.new('RGB', (width, height))
draw = ImageDraw.Draw(dummy_image)
# Load a small font initially
font = ImageFont.truetype(font_path, font_size)
while True:
# Break text into lines that fit within the width
words = text.split()
lines = []
current_line = []
for word in words:
test_line = " ".join(current_line + [word])
test_width = draw.textlength(test_line, font=font)
if test_width <= width:
current_line.append(word)
else:
lines.append(" ".join(current_line))
current_line = [word]
if current_line:
lines.append(" ".join(current_line))
# Calculate total height required for the lines
line_height = font.getbbox('A')[3] + 5 # Add line spacing
total_height = len(lines) * line_height
# Check if text fits within the height
if total_height > height or any(draw.textlength(line, font=font) > width for line in lines):
break
# Increment font size
font_size += 1
font = ImageFont.truetype(font_path, font_size)
# Use the last fitting font
font_size -= 1
font = ImageFont.truetype(font_path, font_size)
# Create the final image with a transparent background
image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
draw = ImageDraw.Draw(image)
# Center the text vertically and horizontally
lines = []
current_line = []
for word in text.split():
test_line = " ".join(current_line + [word])
if draw.textlength(test_line, font=font) <= width:
current_line.append(word)
else:
lines.append(" ".join(current_line))
current_line = [word]
if current_line:
lines.append(" ".join(current_line))
line_height = font.getbbox('A')[3] + 5
total_text_height = len(lines) * line_height
y_offset = (height - total_text_height) // 2
for line in lines:
text_width = draw.textlength(line, font=font)
x_offset = (width - text_width) // 2
draw.text((x_offset, y_offset), line, font=font, fill="black")
y_offset += line_height
rotated_image = image.rotate(0, expand=True)
return rotated_image
def shorten_box(merged_coordinates, pct=0):
# Calculate the center of the box
center_x = (merged_coordinates[0][0] + merged_coordinates[2][0]) / 2
center_y = (merged_coordinates[0][1] + merged_coordinates[2][1]) / 2
# Calculate the width and height of the box
width = merged_coordinates[1][0] - merged_coordinates[0][0]
height = merged_coordinates[2][1] - merged_coordinates[1][1]
# Shrink width and height by 10%
new_width = width * 1-pct/100.
new_height = height * 1-pct/100.
# Calculate the new coordinates
merged_coordinates_new = np.array([
[center_x - new_width / 2, center_y - new_height / 2], # Top-left
[center_x + new_width / 2, center_y - new_height / 2], # Top-right
[center_x + new_width / 2, center_y + new_height / 2], # Bottom-right
[center_x - new_width / 2, center_y + new_height / 2] # Bottom-left
], dtype=int)
return merged_coordinates_new
def detect_and_show_text(reader, image):
"""Detect text and show bounding boxes"""
if isinstance(image, Image.Image):
img_array = np.array(image)
else:
img_array = image
# Get YOLO results first
yolo_results = bubble_detection_model(img_array, conf=7)[0]
yolo_boxes = yolo_results.boxes.xywh.cpu().numpy() # Get YOLO boxes in xywh format
# Detect text
results = reader.readtext(img_array, text_threshold=0.6)
# Create visualization
img_boxes = img_array.copy()
# Ensure we're working with RGB
if len(img_array.shape) == 3:
if img_array.shape[2] == 3: # If it's a 3-channel image
img_boxes = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
# Draw original EasyOCR boxes on img_boxes
for result in results:
pts = np.array(result[0], dtype=np.int32)
cv2.polylines(img_boxes, [pts], isClosed=True, color=(0, 255, 0), thickness=2) # Draw original boxes in green
# Remove text and merge boxes for visualization
img_removed, mask = remove_text_regions(img_array, results, yolo_boxes)
merged_results = merge_boxes(results, img_array.shape)
# Draw merged detection boxes and text (if needed)
for merged_result in merged_results:
pts = np.array(merged_result['box'], dtype=np.int32)
# Color the box red if inside bubble, blue if outside
color = (0, 0, 255) if is_box_inside_yolo(merged_result['box'], yolo_boxes) else (255, 0, 0)
cv2.polylines(img_boxes, [pts], True, color, 2) # Draw merged boxes in red or blue
# Convert to RGB
img_boxes_rgb = cv2.cvtColor(img_boxes, cv2.COLOR_BGR2RGB)
img_removed_rgb = cv2.cvtColor(img_removed, cv2.COLOR_BGR2RGB)
mask_rgba = cv2.cvtColor(mask, cv2.COLOR_RGB2RGBA)
# Get YOLO visualization without labels
bubbles_img = yolo_results.plot(labels=False)
# Convert to PIL Images
img_boxes_pil = Image.fromarray(img_boxes_rgb)
img_removed_pil = Image.fromarray(img_removed_rgb)
bubbles_img_pil = Image.fromarray(bubbles_img)
mask_pil = Image.fromarray(mask_rgba)
return img_boxes_pil, bubbles_img_pil, img_removed_pil, merged_results, mask_pil
def position_text_back(text, merged_coordinates, inpainted_image, font_path):
coords = shorten_box(merged_coordinates)
top_left_coords = coords[0]
text_image = fit_text_to_box(text, coords, font_path)
# Create a transparent layer to blend
layer = Image.new("RGBA", inpainted_image.size, (0, 0, 0, 0))
# Paste the text image onto the transparent layer at the specified position
layer.paste(text_image, tuple(top_left_coords), mask=text_image)
# Ensure both images are in "RGBA" mode
if inpainted_image.mode != "RGBA":
inpainted_image = inpainted_image.convert("RGBA")
if layer.mode != "RGBA":
layer = layer.convert("RGBA")
# Blend the transparent layer with the inpainted image
blended_image = Image.alpha_composite(inpainted_image, layer)
return blended_image
@spaces.GPU()
def process(image, mask,
prompt="background",
negative_prompt="text",
controlnet_conditioning_scale=0.9,
guidance_scale=3.5,
seed=124,
num_inference_steps=10,
true_guidance_scale=3.5
):
size = (768, 768)
image_pil = Image.fromarray(image)
image_or = image_pil.copy()
image_pil = image_pil.convert("RGB").resize(size)
mask = mask.convert("RGB").resize(size)
generator = torch.Generator(device="cuda").manual_seed(seed)
result = pipe(
prompt=prompt,
height=size[1],
width=size[0],
control_image=image_pil,
control_mask=mask,
num_inference_steps=num_inference_steps,
generator=generator,
controlnet_conditioning_scale=controlnet_conditioning_scale,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
true_guidance_scale=true_guidance_scale
).images[0]
return result.resize((image_or.size[:2]))
@spaces.GPU()
def process_image(image, source_language, target_language, mode, font):
"""Main processing function for Gradio"""
if image is None:
return None, None, None, []
# Initialize reader (equivalent to what handle_localization did)
easy_ocr_lan = language_to_ocr.get(source_language, 'en')
reader = easyocr.Reader([easy_ocr_lan], model_storage_directory='.', gpu=False)
# Detect text and get results
img_with_boxes, img_bubbles, img_removed_text, merged_results, mask = detect_and_show_text(reader, image)
if mode == "Basic":
img_inpainted = img_removed_text
else:
img_inpainted = process(image, mask)
# Get translations
translations = localize_boxes(
merged_results,
img_with_boxes,
source_language,
target_language
)
# Create initial result with translations
final_result = img_inpainted.copy()
for translation in translations:
box = translation['box']
text = translation['text']
final_result = position_text_back(text, box, final_result, font_path=f"fonts/{font}.ttf")
# Return all results directly (no need to store in session state)
return img_with_boxes, img_bubbles, img_inpainted, final_result, translations, np.array(mask)
def update_translations(image, edited_texts, translations_list, img_removed_text, font):
"""Update the image with edited translations"""
if image is None or img_removed_text is None:
return None
# Convert numpy array back to PIL Image
img_removed = Image.fromarray(img_removed_text)
final_result = img_removed.copy()
# Update the translations with edited texts
for trans, new_text in zip(translations_list, edited_texts.split('\n')):
trans['text'] = new_text.strip()
box = trans['box']
final_result = position_text_back(new_text, box, final_result, font_path=f"fonts/{font}.ttf")
return np.array(final_result)
with gr.Blocks(title="Nativ - Demo") as demo:
# Store translations list in state
translations_state = gr.State([])
gr.Markdown("# Nativ - Demo")
with gr.Row():
with gr.Column():
# Input components
input_image = gr.Image(type="numpy", label="Upload Image")
source_language = gr.Dropdown(
choices=['Simplified Chinese', 'Traditional Chinese', 'Korean', 'Japanese', 'English'],
value='Simplified Chinese',
label="Source Language"
)
target_language = gr.Dropdown(
choices=['English', 'Spanish', 'Chinese', 'Korean', 'French', 'Japanese'],
value='English',
label="Target Language"
)
# Toggle for mode selection
localization_mode = gr.Radio(
choices=["Basic", "Advanced"],
value="Basic",
label="Localization Mode"
)
font_selector_i = gr.Dropdown(
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
value='omniscript_bold',
label="Select Font"
)
process_btn = gr.Button("Localize")
with gr.Column():
# Output components
speech_bubbles = gr.Image(type="numpy", label="Detected Speech Bubbles", interactive=False)
detected_boxes = gr.Image(type="numpy", label="Detected Text Regions", interactive=False)
removed_text = gr.Image(type="numpy", label="Removed Text", interactive=False)
final_output = gr.Image(type="numpy", label="Final Result", interactive=False)
# Translation editing section
with gr.Row():
translations_text = gr.Textbox(
label="Edit Translations (one per line)",
lines=5,
placeholder="Edit translations here..."
)
font_selector_f = gr.Dropdown(
choices=['Arial', 'Ldfcomicsansbold', 'Times New Roman', 'georgia', 'calibri', 'Verdana', 'omniscript_bold', 'helvetica'], # Add more fonts as needed
value='Arial',
label="Select Font"
)
update_btn = gr.Button("Apply Changes")
def process_and_show_translations(image, source_lang, target_lang, mode, font):
boxes, bubbles, removed, final, translations, mask = process_image(image, source_lang, target_lang, mode, font)
# Extract just the texts and join with newlines
texts = '\n'.join(t['text'] for t in translations)
return boxes, bubbles, removed, final, texts, translations
# Process button click
process_btn.click(
fn=process_and_show_translations,
inputs=[input_image, source_language, target_language, localization_mode, font_selector_i],
outputs=[detected_boxes, speech_bubbles, removed_text, final_output, translations_text, translations_state]
)
# Update translations button click
update_btn.click(
fn=update_translations,
inputs=[input_image, translations_text, translations_state, removed_text, font_selector_f],
outputs=final_output
)
demo.launch(debug=False, show_error=True,share=True)